点击查看大图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

ABB DCS600 技术数据

大小:
4MB
类型:
PDF文档
内容:
共80页
最后更新于:2017年03月15日
27
纠错
全文文本
III i DCS Thyristor Power Converters for DC drive systems 25 to 5150 A Technical Data DCS 400 DCS 500B DCS 600 DCF 500B DCF 600 III ii How to use the DCS Documentation System The matrix below indicates all available product documentation and its corresponding order numbers on its left columns as well as all existing DC Drive systems on its top rows. System descriptions, Technical data and Operating instructions (as far as they are available for the corresponding drive) are the basic documents and will be delivered together with each drive. All other documentation has to be ordered separately. DC drive systems System Drive Standard Drive Rebuild Cubicle Module Cubicle Module Product documentation D C A 6 00 D C A 6 20 D C S /D C F 6 00 M ul tiD riv e D C S 6 00 C ra ne D riv e D C A 5 00 / D C A 5 20 D C S 5 00 E as y D riv e D C S 4 00 E as y D riv e D C S 4 00 D C S /D C F 5 00 B D C E 4 00 D C R System description Language Volume 3ADW000066 EN, DE,FR II D x x x 3ADW000072 EN, DE II F x x x 3ADW000121 ➀ EN II F1 x x 3ADW000095 (Manual) ➁ EN,DE,FR,IT,SP II K x x x 3ADW000139 EN II F x x 3ADW000071 (Flyer) EN, DE x 3ADW000152 EN, DE,FR,IT,SP x 3ADW000173 (Flyer) EN x Technical Data Language Volume 3ADW000165 EN III x x x Operating Instructions Language Volume 3ADW000055 EN,DE,FR,SP IV A x x x 3ADW000080 EN, DE IV F x x x 3ADW000091 (Installation) EN, DE IV F1 x x x x Software description Language Volume 3ADW000078 EN V D1 x x x 3ADW000076 EN V F x x x 3AST000953 ➂ EN x x Tools Language Volume 3AFE61178775 CMT/DCS500 EN - x x x EN 5926915-1 GAD EN - x x x 3ADW000048 (Application blocks) EN V A2 x x x 3AFY61296123 Drive Window EN - x x x x Service Instructions Language Volume 3ADW000093 EN, DE VI A x x x x x x x 3ADW000131 EN VI K x x x Fieldbus Language Volume 3ADW000086 EN - x x x 3ADW000097 EN - x x x x Others Language Volume 3ADW000115 12-Pulse operation EN VIII F2 x x 3ADW000092 Rebuild manual EN XI H1 x 3ADW000128 Paralleling DCS Conv. EN VIII D1 x x x x 3ADW000040 12-Puls operation EN, DE VIII A2 x x Status: 25.March.2002 ➀ Covers information of Technical data ➁ Covers information of Technical data, Operating Instructions, Software Description ➂ Covers information of Operating Instructions, Software Description av ai la bl e on ly fo r: D C S 5 00 B / 60 0 dr iv e sy st em s III iii Contents III TECHNICAL DATA 1 Quick Guide..................................................................... III 1-1 1.1 DCS 500B .............................................................................................. III 1-2 1.2 DCF 500B ............................................................................................... III 1-3 1.3 DCS 600 ................................................................................................. III 1-4 1.4 DCF 600 ................................................................................................. III 1-5 1.5 DCS 400 ................................................................................................. III 1-6 2 Converter modules ......................................................... III 2-1 2.1 Dimensions .............................................................................................. III 2-2 2.2 Fuses - installed inside the converter (Size A5, C4) ............................... III 2-8 2.3 Cross-sectional areas - Tightening torques ............................................. III 2-9 2.4 Power losses .......................................................................................... III 2-10 2.5 Power section cooling ............................................................................ III 2-11 3 Control boards ................................................................ III 3-1 3.1 SDCS-CON-2 ......................................................................................... III 3-1 4 Power supply board ....................................................... III 4-1 4.1 SDCS-POW-1 .......................................................................................... III 4-1 5 Power interface boards .................................................. III 5-1 5.1 Power interface board SDCS-PIN-1x .................................................... III 5-1 5.2 Power interface board SDCS-PIN-20x .................................................. III 5-2 5.3 Galvanic isolation - T90, A92 ................................................................. III 5-5 5.4 Power interface board (SDCS-PIN-41 / PIN-5x) .................................... III 5-9 5.5 Fan current monitoring PW 1003 ......................................................... III 5-13 5.6 Zero current detection SDCS-CZD-01 ................................................. III 5-15 5.7 Power signal measuring board SDCS-MP-1 ....................................... III 5-16 6 Digital and analogue I/O boards .................................... III 6-1 6.1 Digital I/O board SDCS-IOB-2 ............................................................... III 6-2 6.2 Analogue I/O board SDCS-IOB-3 .......................................................... III 6-4 6.3 I/O Extension bord SDCS-IOE-1 ............................................................ III 6-8 7 Communication boards .................................................. III 7-1 7.1 Communication board SDCS-COM-5 .................................................... III 7-1 7.2 Control and communication board SDCS-AMC-DC .............................. III 7-2 7.3 DDCS Branchning unit NDBU-95 .......................................................... III 7-6 8 Field exciters .................................................................. III 8-1 8.1 SDCS-FEX-1 (internal) ........................................................................... III 8-1 8.2 SDCS-FEX-2 (internal) ........................................................................... III 8-2 8.3 DCF503A-0050 and DCF504A-0050 (external) .................................... III 8-4 8.4 DCF505 and DCF506 Overvoltage protection ....................................... III 8-8 9 Accesories ...................................................................... III 9-1 9.1 Accessories - Power circuit .................................................................... III 9-1 9.2 Accessories - Field ................................................................................. III 9-6 9.3 Fan, electronics ...................................................................................... III 9-7 Appendix A ..........................................................................III A-1 Optical cables ................................................................................................ III A-1 We recommend to use both, SYSTEM DESCRIPTION plus TECHNICAL DATA at the same time in case you are planning and engineering your drive. You will find all necessary technical information in there to solve your problem. III iv III 1-1 1 Quick Guide General remarks The term “DCS thyristor power converter” is a general designation for basic DC converters from ABB. This term can be found in many parts of the relevant documentation. The precise product name in accordance with the brief descriptions given below characterizes a specific unit. Brief description of DCS 500B The DCS 500B unit range is an enhancement developed from the DCS 500 range. The DCS 500B is an armature converter with the following standard features: • Design and commissioning tools • Monitoring functions • Communication via databus • Human-machine interface • More than 300 additional functions blocks programmable under Win- dows • Graphical Application Designer • Plain text display • FOR HIGH POWER Brief description of DCF 500B With software release 21.232 or higher DCS 500B has a '3-phase field exciter mode'. A DCF 500B is a three- phase field exciter based on the programmable DCS 500B software and the SDCS-CON-2 control board. The interface board PIN-1x is modified; - an overvoltage protection unit DCF 505/506 is required. Brief description of DCS 600 The DCS 600 converter family is based on the hardware developed for the DCS 500B type. Instead of a COM-x board, the SDCS_AMC_DC board is used. PC tools will be connected there, as well as the APC (Application controller), if the APC is used as a PLC. If a different PLC is used, separate adapter modules are needed. They must be connected to the AMC-DC board, too. The software code always begins with S15.xxx for MultiDrive or S18.xxx for Crane drives. Brief description of DCF 600 The DCF 600 unit range is intended to be used for supplying motor fields and is based on the hardware and system configuration of the DCS 600 unit. The software is identical to the DCS 600 software. Similar to DCF 500B units the DCF 505/506 overvoltage protection unit is required. The same modification is applied to the PIN-1x board, compared to DCF 500B. Brief description of DCS 400 The DCS 400 is the smallest drive in its class. The compact design has been partly achieved by a fully integrated field exciter based on IGBT technology. A commissioning wizard - available on the control panel and the PC tool - makes start-up of the drive easy. In addition, the DCS 400 contains application macros. III 1-2 1.1 DCS 500B This functional overview of DCS 500B components makes it easy to find detailed technical data in the corresponding chapters. L1K 1 T 2 Q 1 F 2 F 3 X 12 : X 13 : X 37 : X 1: X 2: M T T 8 3 8 5 7 2 X 17 : X 16 : X 14 : P C + C M T /D C S 50 0 DCF 503A / 504A C O M 5 C O N 2 P O W 1 P IN 1 x P IN 5 1 DCF 501B / 502B IO B 2 x IO B 3 IO E 1 P S 53 11 X 11 : X 33 : P IN 2 0x 7 3 8 4 T 3 F 1 K 5 K 3 ≤ 69 0V ≤ 10 00 V C D P 3 12 S N A T 6 xx F E X 1 F E X 2 N xx x- 0x µP M D C S 5 0. B .. .. -. 1- 21 .. .. . P IN 4 1 P IN 4 1 L3 * + 24 V P ow er su pp ly to fi el dThree-phase field supply C O M x - sh or t d es ig na ti on o f c o m po n en ts an al o g ue in p u t / o u tp u t al te rn at iv e E M C f ilt er E ar th -f au lt m o n ito r F ie ld b us to th e P L C optical fibre optical fibre d ig it al in p ut / o ut p u t L eg en d 7. 1 - de ta il e d de s cr ip ti o n s e e c ha pt e r 7. 1 se e T ec h n ic al D at a * 7. 1 3. 1 4. 1 5. 1 5. 4 6. 1 6. 2 6. 3 6. 2 5. 2 9 .1 9 .3 9 .2 8. 1 8. 2 2 8 .3 8 .4 5. 4 5. 4 2 III 1-3 1.2 DCF 500B This functional overview of DCF 500B components makes it easy to find detailed technical data in the corresponding chapters. X 1: X 2: X 17 : X 16 : C O M 5 C O N 2 X 11 : X 33 : C D P 3 12 µP 8 3 8 5 7 2 IO B 2 x IO B 3 IO E 1 P S 53 11 7 3 8 4 N xx x- 0x + 24 V L1K 3 T 2 Q 1 F 2 X 37 : P C + D D C -T oo l P O W 1 P IN 1 x DCF 506 P IN 2 0x F 1 K 5 ≤ 69 0V ≤ 50 0V S N A T 6 xx M             X 12 : X 13 : CZD-0x to X 16 : D C S 5 00 B (A rm at ur e co nv er te r) to a d ig ita l i np ut of D C F 5 00 B C O N x - sh or t d es ig na ti o n o f co m po n en ts an al o g ue in p u t / o u tp u t al te rn at iv e E M C f ilt er E ar th -f au lt m o n ito r d ig it al in p ut / o ut p u t L eg en d 7. 1 -                    m od ifi ed optical fibre optical fibre F ie ld b us to th e P L C 7. 1 3. 1 4. 1 5. 1 6. 1 6. 2 6. 2 5. 2 9 .1 9 .3 2 2 8. 4 6. 3 5. 6 III 1-4 1.3 DCS 600 This functional overview of DCS 600 components makes it easy to find detailed technical data in the corresponding chapters. DCF 601 / 602 X 1: X 2: X 17 : A M C -D C X 11 : X 33 : D S P V260 C H 3 C H 0 C H 2 C O N 2 µ P X1 6: 7 3 8 4 X 14 : 7 2IO E 1 M o n it o ri n g L E D b a r N L M D P an el C D P 3 12 L1K 1 T 2 Q 1 F 2 F 3 M T T 8 3 8 5 P C + D ri ve sW in d o w + F C B DCF 503 / 504 P O W 1 P IN 1 x P IN 5 1 IO B 2 x IO B 3 P S 53 11P IN 2 0x T 3 F 1 K 5 K 3 ≤ 69 0V ≤ 10 00 V -N D P A -0 2 -N D P C -1 2 -N IS A -0 3 (I S A ) F E X 1 F E X 2 M P IN 4 1 P IN 4 1 L3 N D B U 95 (P C M C IA ) X 12 : X 13 : X 37 : M ul ti D ri ve so ck et N D P I A 92 T 90                   C O N x - sh or t d es ig na ti o n o f co m po n en ts an al o g ue in p u t / o u tp u t al te rn at iv e E M C f ilt er E ar th -f au lt m o n ito r to th e P L C o pt ic al fi b re d ig it al in p ut / o ut p u t L eg en d 7. 1                       P L C -A dv an t c o n tr o l - o pt io n al I /O - M as te r/ F o llo w er F ie ld B u s A d ap te r M o d u le N ... . to other drives R ev D o r la te r 12 -P u ls e lin k P ow er su pp ly Three-phase field supply 7. 2 3. 1 4. 1 5. 1 5. 4 6. 1 6. 2 6. 2 5. 3 5. 2 9 .1 9 .3 9 .2 8. 1 8. 2 2 8 .3 5. 4 5. 4 7. 3 6. 3 2 8 .4 III 1-5 1.4 DCF 600 This functional overview of DCF 600 components makes it easy to find detailed technical data in the corresponding chapters. X 1: X 2: X 17 : A M C -D C X 11 : X 33 : D S P V 26 0 C H 3 C H 0 C H 2 C O N 2 µP X 16 : X 14 : X 12 : X 13 : X 37 : M o n it o ri n g L E D b ar N L M D P an el C D P 3 12 M ul ti D ri ve so ck et N D P I L1K 3 T 2 Q 1 F 2 M 8 3 8 5 P C + D ri ve sW in d o w + F C B DCS 600 P O W 1 P IN 1 x DCF 506 IO B 2 x IO B 3 P IN 2 0x F 1 K 5 ≤ 69 0V ≤ 60 0V M            N D B U 95 -N D P A -0 2 -N D P C -1 2 -N IS A -0 3 (I S A ) (P C M C IA ) 7 2IO E 1 7 3 8 4 CZD-0x 2 C O N 2 - sh or t d es ig na ti o n o f co m po n en ts an al o g ue in p u t / o u tp u t al te rn at iv e E M C f ilt er E ar th -f au lt m o n ito r to th e P L C o pt ic al fi b re d ig it al in p ut / o ut p u t L eg en d 7. 1 -                    P L C -A dv an t c o n tr o l - o pt io n al I /O - M as te r/ F o llo w er F ie ld B u s A d ap te r M o d u le N ... . to other drives m od ifi ed R ev D o r la te r to a d ig ita l i np ut o f D C F 6 00 7. 2 3. 1 4. 1 5. 1 6. 1 6. 25. 2 9 .1 9 .3 2 8 .4 7. 3 6. 3 5. 6 III 1-6 1.5 DCS 400 Remark: All detailed information about the DCS 400 DC drive you can only find in the DCS 400 Manual (documentation no. 3ADW 000 095). L1K 1 Q 1 M T T S D C S -C O N -3 A 4 2 F 1 23 0. ..5 00 V µP M D C S 4 00 11 5. ..2 30 V A C 11 5 / 2 30 V A C 8 2 1 RS232 S D C S -P IN -3 A N xx x- 0x E M C f ilt er F ie ld b us to th e P L C L eg en d P ow er S up p ly T hy ri st o r co n tr o l P C + T oo l o r P LC C on tr ol e le ct ro ni cs Field supply SDCS-FIS-3A In p ut s / O u tp u ts Serial interfaces optical fibre d ig it al in - /o u tp ut , 2 4 V ; no g al va n ic is ol at io n A na lo gu e o ut p u t; 1 1 b it +s ig n an al o g ue in p u t; 1 1 b it +s ig n R el ay o u tp ut ; 25 0 V A C , 3 A F ie ld co n tr o l C o n tr ol p an el D C S 40 0P A N III 2-1 2 Converter modules M L1 L2 L3 F1x F1x F1x F1x F1x F1x DCS 500 / DCS 500B / DCS 600 / DCF 500B / DCF 600 Unit range type DCF 500B and DCF 600 for output current of up to max. 520 A available 2.1 Dimensions ............................................................................................ III 2-2 2.2 Fuses - installed inside the converter (Size A5, C4) ............................ III 2-12 2.3 Cross-sectional areas - Tightening torques ......................................... III 2-14 2.4 Power losses ........................................................................................ III 2-16 2.5 Power section cooling .......................................................................... III 2-19 Note: For clearness the type designation in this chapter is shown in the fol- lowing way: Designation is valid for DCS 500 DCS 500B DCS 600 DCF 500B DCF 600 III 2-2 2.1 Dimensions Module C1 DCS 50x-0025 DCS 50x-0050 DCS 50x-0075 Dimensions in mm Weight appr. 7.6 kg Module C1 DCS 50x-0100 DCS 50x-0110 DCS 50x-0140 Dimensions in mm Weight appr. 11.5 kg Fig. 2.1/1: Dimension drawing C1-Module Fig. 2.1/2: Dimension drawing C1-Module (+) (-) 25 0 Center of hinge Swinging radius (+) (-) Swinging radius Center of hinge DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 III 2-3 Module C2 DCS 50x-0200 DCS 50x-0250 DCS 50x-0270 DCS 50x-0350 Dimensions in mm Weight appr. 22,8 kg Module C2 DCS 50x-0450 DCS 50x-0520 Dimensions in mm Weight appr. 29 kg Busbars in mm: 25 x 3 Busbars in mm: 30 x 5 Fig. 2.1/3: Dimension drawing C2-Module Fig. 2.1/4: Dimension drawing C2-Module DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 (+) (-) 15 0 25 0 176 (0200/0250) 191 (0270/0350) Swinging radius Center of hinge (+) (-) 15 0 25 0 Swinging radius Center of hinge III 2-4 Module C2 DCS 50x-0680 DCS 50x-0820 DCS 50x-1000 Dimensions in mm Weight appr. 42 kg DCS 500 valid for DCS 500B / DCS 600 Fig. 2.1/5: Dimension drawing C2-Module 15 0 25 0 Swinging radius Center of hinge 10 M12 66 50 C1 D1 V1U1 W1 Main Connections at view from top III 2-5 Module A5 DCS 50x-0903 DCS 50x-1203 DCS 50x-1503 DCS 50x-2003 Dimensions in mm Weight appr. 110 kg Fig. 2.1/6: Dimension drawing A5-Module Busbars in mm: DC 80 x 10 AC 60 x 5 DCS 500 valid for DCS 500B / DCS 600 510 450 127.5 125 125 U1 V1 W1 55 276 400 461 483 10 2 earthing M12 C1 D1 325.5 65.5 25 50 50 50 Ø 14 17.75 44 .5 80 69 earthing M12 77 3 400 85.5 17 26 for M10 22 Ø 14 17 26 34 10 05 82 0 77 5 III 2-6 Module C4 Connection right-hand side DCS 50x-2050-xxRx.. DCS 50x-2500-xxRx.. DCS 50x-2650-xxRx.. DCS 50x-3200-xxRx.. DCS 50x-3300-xxRx.. DCS 50x-4000-xxRx.. DCS 50x-4750-xxRx.. DCS 50x-5150-xxRx.. Dimensions in mm Weight appr. 350 kg Busbars in mm: 100 x 10 Fig. 2.1/7: Dimension drawing C4-Module with AC/DC power connection Right-hand side DCS 500 valid for DCS 500B / DCS 600 (+)/ (-) (max 654 *) (3 10 * ) * for 1000 V units Holes 14x20 A - A B - B C - C A A C C BB III 2-7 Module C4 Connection left-hand side DCS 50x-2050-xxLx.. DCS 50x-2500-xxLx.. DCS 50x-2650-xxLx.. DCS 50x-3200-xxLx.. DCS 50x-3300-xxLx.. DCS 50x-4000-xxLx.. DCS 50x-4750-xxLx.. DCS 50x-5150-xxLx.. Dimensions in mm Weight appr. 350 kg Busbars in mm: 100 x 10 Fig. 2.1/8: Dimension drawing C4-Module with AC/DC power connection Left-hand side DCS 500 valid for DCS 500B / DCS 600 (+) / (-) (max 654 *) (3 10 * ) * for 1000 V units Holes 14x20 A - A B - B C - C A A C C BB III 2-8 Converter type Model Fuse F1 Size Manufacturer / Type Inside calip. [mm] 400 V / 500 V DCS 50x-1203-41/51 A5 700A 690V UR 5 Bussman 170M 6162 110 DCS 50x-1503-41/51 A5 1250A 660V UR 5 Bussman 170M 6166 110 DCS 50x-2003-41/51 A5 1600A 660V UR 5 Bussman 170M 6169 110 DCS 50x-2500-41/51 C4 1700A 1000V UR 8 Bussman 170M 7034 DCS 50x-3300-41/51 C4 2200A 1000V UR 8 Bussman 170M 7035 DCS 50x-4000-41/51 C4 2500A 660V UR 7 Bussman 170M 7026 DCS 50x-5150-41/51 C4 3000A 660V UR 7 Bussman 170M 7028 600 V / 690 V DCS 50x-0903-61/71 A5 630A 1250V UR 6 Bussman 170M 6144 110 DCS 50x-1503-61/71 A5 1100A 1250V UR 6 Bussman 170M 6149 110 DCS 501-2003-61/71 A5 1400A 1000V UR 6 Bussman 170M 6151 110 DCS 50x-2050-61/71 C4 1100A 1000V UR 8 Bussman 170M 7031 DCS 50x-2500-61/71 C4 1700A 1000V UR 8 Bussman 170M 7034 DCS 50x-3300-61/71 C4 2200A 1000V UR 8 Bussman 170M 7035 DCS 50x-4000-61/71 C4 2500A 1000V UR 8 Bussman 170M 7036 DCS 50x-4750-61/71 C4 2500A 1000V UR 8 Bussman 170M 7036 790 V DCS 50x-2050-81 C4 1100A 1000V UR 8 Bussman 170M 7031 DCS 50x-3200-81 C4 2200A 1000V UR 8 Bussman 170M 7035 DCS 50x-4000-81 C4 2500A 1000V UR 8 Bussman 170M 7036 DCS 50x-4750-81 C4 2500A 1000V UR 8 Bussman 170M 7036 1000 V DCS 50x-2050-91 C4 1500A 1250V UR 9 Bussman 170M 7510 DCS 50x-2650-91 C4 1500A 1250V UR 9 Bussman 170M 7510 DCS 50x-3200-91 C4 2000A 1250V UR 9 Bussman 170M 7513 DCS 50x-4000-91 C4 2100A 1500V UR 10 Bussman 170M 7520 Table 2.2/1: Fuses installed inside the converter 2.2 Fuses - installed inside the converter Size 5, 6, 11 Size a b c d 5 50 29 30 76 5a 50 29 30 76+14* 6 80 14 30 76 11 50 29 25 61 * tag for clip-on switch Size A 7 62 8 90 9 105 10 120 Size 7...10 Remark: Given dimensions may be exeeded in some cases. Please take them only for information. 15 4xM10 min 10 deep Ø 3 3 2525 100 67 .5 82 .5 Ø 11 max 105 Ø 5 6 A 8 m ax 1 05 m ax d max d108 c11 11 14 17 139 6 b a b Indicator Fig. 2.2/1: Fuses size 5, 6, 11 Fig. 2.2/2: Fuses size 7...10 L1 L2 L3 F1x F1x F1x F1x F1x F1x DCS 500 valid for DCS 500B / DCS 600 III 2-9 epyttinU )1MK,1MA(1D,1C )5KA,3KA,1KA(1W,1V,1U EP ]mN[ CDI ]-A[ .1 ]²mm[ ).2( ]²mm[ vI ]~A[ .1 ]²mm[ ).2( ]²mm[ ]²mm[ xx-5200-x05SCD 52 4x1 - 02 4x1 - 4x1 6Mx1 6 xx-0500-x05SCD 05 01x1 - 14 6x1 - 6x1 6Mx1 6 xx-5700-x05SCD 57 52x1 - 16 52x1 - 61x1 6Mx1 6 xx-0010-x05SCD 001 52x1 - 28 52x1 - 61x1 6Mx1 6 xx-0110-x05SCD 011 52x1 - 09 52x1 - 61x1 6Mx1 6 xx-0410-x05SCD 041 53x1 - 411 53x1 - 61x1 6Mx1 6 xx-0020-x05SCD 002 53x2 59x1 361 52x2 59x1 52x1 8Mx1 31 xx-0520-x05SCD 052 53x2 59x1 402 52x2 59x1 52x1 8Mx1 31 xx-0720-x05SCD 072 53x2 59x1 022 52x2 59x1 52x1 8Mx1 31 xx-0530-x05SCD 053 07x2 - 682 05x2 05x1 8Mx1 31 xx-0540-x05SCD 054 59x2 - 763 59x2 - 05x1 01Mx1 52 xx-0250-x05SCD 025 59x2 - 424 59x2 - 05x1 01Mx1 52 xx-0860-x05SCD 086 021x2 - 555 021x2 - 021x1 21Mx1 05 xx-0280-x05SCD 028 051x2 - 966 021x2 - 021x1 21Mx1 05 xx-3090-x05SCD 009 59x4 051x3 437 07x4 59x3 051x1 21Mx2 05 xx-0001-x05SCD 0001 581x2 - 618 051x2 - 051x1 21Mx1 05 xx-3021-x05SCD 0021 021x4 - 979 59x4 021x3 581x1 21Mx2 05 xx-3051-x05SCD 0051 581x4 - 4221 051x4 - 051x2 21Mx2 05 xx-3002-x05SCD 0002 021x8 581x6 2361 042x4 - 042x2 21Mx2 05 xx-0502-x05SCD 0502 021x8 581x6 3761 021x6 051x5 021x3 21Mx4 05 xx-0052-x05SCD 0052 581x7 - 0402 021x8 581x6 021x4 21Mx4 05 xx-0562-x05SCD 0562 581x7 - 2612 021x8 581x6 021x4 21Mx4 05 xx-0023-x05SCD 0023 581x8 - 1162 581x7 - 051x4 21Mx4 05 xx-0033-x05SCD 0033 581x8 - 3962 581x7 - 051x4 21Mx4 05 xx-0004-x05SCD 0004 003x7 - 4623 042x8 - 042x4 21Mx4 05 xx-0574-x05SCD ➀ 0574 003x8 - 6783 003x6 - 003x3 21Mx4 05 xx-0515-x05SCD ➀ 0515 003x8 - 2024 003x6 - 003x3 21Mx4 05 You will find instructions on how to calculate the PE conductor’s cross-sectional area in VDE 0100 or in equivalent national standards. We would remind you that power converters may have a current-limiting effect. 2.3 Cross-sectional areas - Tightening torques ➀ Reduced ambient temperature 40°C Table 2.3/1: Cross-sectional areas - tightening torques Recommended cross-sectional area to DINVDE 0276-1000 and DINVDE 0100-540 (PE) trefoil arrangement, up to 50°C ambient temperature. DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 III 2-10 Converter type  y → y=4 (400 V) y=5 (500 V) y=6 (600 V) y=7 (690 V) y=8 (790 V) y=9 (1000V)  x=1 → 2-Q IDC [A] [W] [W] [W] [W] [W] [W] x=2 → 4-Q 4Q 2Q PV-I PV-U PV-I PV-U PV-I PV-U PV-I PV-U PV-I PV-U PV-I PV-U DCS50x-0025-y1 25 25 60 30 60 47 DCS50x-0050-y1 50 50 123 30 123 47 DCS50x-0050-61 50 50 108 46 DCS50x-0075-y1 75 75 175 30 175 47 DCS50x-0100-y1 100 100 207 50 207 70 DCS50x-0110-61 110 100 284 100 DCS50x-0140-y1 140 125 311 50 311 70 DCS50x-0200-y1 200 180 488 50 488 70 DCS50x-0250-y1 250 225 656 50 656 70 DCS50x-0270-61 270 245 781 100 DCS50x-0350-y1 350 315 840 50 840 70 DCS50x-0450-y1 450 405 1040 70 1040 80 1119 110 DCS50x-0520-y1 520 470 1238 70 1238 80 DCS50x-0680-y1 680 610 1622 105 1622 140 DCS50x-0820-y1 820 740 1986 125 1986 160 DCS50x-1000-y1 1000 900 2527 125 2527 160 DCS50x-0903-y1 900 900 4326 617 4326 617 DCS50x-1203-y1 1200 1200 3882 202 3882 315 DCS50x-1503-y1 1500 1500 4295 202 4295 315 5157 454 5295 617 DCS50x-2003-y1 2000 2000 5467 202 5467 315 5205 454 6078 617 DCS50x-2050-y1 2050 2050 8017 503 8017 665 8017 871 7278 1396 DCS50x-2500-y1 2500 2500 7611 305 7611 476 7611 685 7611 907 DCS50x-2650-y1 2650 2650 10673 1396 DCS50x-3200-y1 3200 3200 10287 871 11073 1396 DCS50x-3300-y1 3300 3300 10764 305 10764 476 10764 685 10764 907 DCS50x-4000-y1 4000 4000 12251 305 12251 476 12914 503 12914 665 12914 871 14430 1396 DCS50x-4750-y1 4750 4750 14309 503 14309 665 14309 871 DCS50x-5150-y1 5150 5150 15322 305 15322 476 Table 2.4/1: DCS 500 Power losses 2.4 Power losses The units’ power loss is made up of several different components: • current-dependent losses PV-I - of the thyristors - of the fuses - of the busbar system • voltage-dependent losses PV-U - snubber circuit of the thyristors • almost constant losses PV-C - unit electronics - unit fan - field supply Depending on what you want to achieve by your power-loss study, you must make up your mind on the following points: • Efficiency calculation for the drive system con- cerned: For this purpose, all the power-loss compo- nents mentioned above (and additionally the losses caused, for instance, by the motor fan, line reactor, cabling of network/power convert- er/motor, field supply unit and matching trans- former, etc.) must be added. • Fan losses can be estimated by 85% of the fan power consumption (see table 2.5/2). Remarks on the table • The values stated are “worst case”, i.e. the values obtained under the most unfavourable conditions. • The losses of the unit electronics can be assumed to be PV-C = 30 ... 60 W, dependent on the loading involved (SDCS-COMx, number of binary inputs to “1-signal”, pulse encoder used, etc.). • The current-dependent losses can be converted as follows for the partial load range:      − − −≈ +     * , * % * , * % 0 6 100% 0 4 100% 2 • For the units  1000 A, the losses due to external semiconductor busbars, busbar systems/wiring are not included. DCS 500 DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 III 2-11 naF 2B25NC 341E2W 002E2W 052E2W 061E2D rofR...D4-P53GR 1yLxxxx-x05SCD rofL...D4-P53GR 1yRxxxx-x05SCD ]V[egatlovdetaR ~1;032...802 ~1;032 ~1;032 ~1;032 ~1;032 ~3;004...083  .nnoc- .nnoc-~3;096...514 ]%[ecnareloT 01± 01-/6+ 01-/6+ 01-/6+ 01± 01± ]zH[ycneuqerF 05 06 05 06 05 06 05 06 05 06 05 06 ]W[noitpmusnocrewoP 41 31 62 92 46 08 531 581 356 068 0083 0083 ]A[noitpmusnoctnerruC 41.0 21.0 21.0 31.0 92.0 53.0 95.0 28.0 05.2 4.3 7.3/5.6 7.3/5.6< ]A[tnerrucgnikcolB 52.0< 2.0< 3.0< 4,0< 7.0< 8.0< 9.0< 9.0< 57.3 5.4 51/72 51/72< m[gniwolbyleerf,emulovriA 3 ]h/ 651 081 573 044 529 0301 0681 5791 0011 - m[tniopgnikroW 3 Ata]h/ - - - - - .rppa /0053 A3.2 ➁ .rppa /0024 A2.3 ➁ ]C°[erutarepmettneibma.xaM 06< 58< 57< 06 55< 04< esaergfoemitefillufesU .rppa °06/h00052 rppa °06/h00054. °06/h00054.rppa h00004.rppa °04/h00004.rppa °04/h00004.rppa noitcetorP ecnadepmI ➀ :rotcetedrutarepmeT UN  I;~V032 N  ~A5.2 ➀ gniebssalcnoitalusniehtrofelbissimrepnahtrehgih,erutarepmetgnidniwanitlusertonlliwrotordekcolbahtiwtnerrucdesaercnioteudsessoldesaercnI .devlovni ➁ V514tadesusinafehtfi,rewol%02.rppawolfriaehtdnarehgih%02.rppaeblliwtnerrucrotomehT 2.5 Power section cooling Fan assignment for DCS 500 Fan data for DCS 500 Fan connection for DCS 500 Table 2.5/2: Fan data for DCS 500 Table 2.5/1: Fan assignment for DCS 500 Y Y DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 Y Y Con- verter Fan Phase sequence is differ- ent for L and R type. See cover of fan terminal box. epytretrevnoC ledoM noitarugifnoC epytnaF ...1y-5200-x05SCD 1y-5700-x05SCD 1C 1 2B25NC ...1y-0010-x05SCD 1y-0410-x05SCD 1C 2 341E2W ...1y-0020-x05SCD y-0280-x05SCD 2C 3 002E2W 1y-0001-x05SCD 2C 3 052E2W ...1y-3090-x05SCD 1y-3002-x05SCD 5A 4 061E2D ...1y-0502-x05SCD 1y-0515-x05SCD 4C 5 rofR...D4-P53GR 1yLxxxx-x05SCD rofL...D4-P53GR 1yRxxxx-x05SCD Config. 1 M ~ 1 2 3X2: Config. 2 M ~ϑ 1 2 3 4 5X2: Config. 3 M ~ϑ 1 2 3 4 5X2: Config. 4 Config. 5 U1 V1 W1 U2 V2 W2 TK TKPE M ~ϑ Voltage 380-400 V 415-690 V Connection U1-W2 V1-U2 W1-V2 U2-V2-W2 M ~ϑ 2 31 5 6X2: 4 TW TW III 2-12 Monitoring the DCS 500 power section detector is used as for (a.) and (b.) above, but it is here not mounted on a heat sink but at the unit’s housing in the upper intake air zone. The detector thus measures the power section’s radiated heat and any changes in the cooling air temperature and volume. Since the cooling air volume can only be detected indirectly, a differ- ential-pressure switch has been additionally fitted at the unit’s housing. The resistance change proportional to the temperature is acquired and evaluated in the unit’s software. If the temperature rises above the parameterized value, then first an alarm will be outputted, and - if the temperature continues to rise - an error message. The value to be set for this parameter must not be more than 10 de- grees above the permissible ambient tempera- ture. The differential-pressure switch compares the pressure inside the unit with the normal atmos- pheric pressure. If the fan has been switched on and the unit door closed (and no unit casings have been removed), the pressure switch will signal “Cooling conditions ok”, which means the drive may be enabled. There is no need to set any specific differential pressure (recommenda- tion: centre setting). a.The power sections of sizes C1 and C2 are monitored by an electrically isolated PTC ther- mistor detector, which is installed on the likewise electrically isolated heat sink near the thyristors. The resistance change proportional to the temperature is acquired and evaluated in the unit’s software. If the temperature rises above a certain value predefined by the unit coding involved, then first an alarm will be outputted, and - if the temperature continues to rise - an error message. This means that changes in the rated cooling conditions, such as cooling air volume and temperature, the fan itself, overload due to an excessively high load current, etc. are detected. b.The size-A5 power section is likewise monitored by an electrically isolated PTC thermistor detec- tor, which is installed on the non-isolated heat sink in an isolated configuration by means of an adaptor plate and an isolating disk. Evaluation of the resistance and the protection effect corre- spond to those mentioned for point (a.) above. c. The size-C4 power section is not directly moni- tored by an electrically isolated PTC thermistor detector. For this size, the same thermistor DCS 500 valid for DCS 500B / DCS 600 / DCF 500B / DCF 600 III 3-1 The control board is based on the 80186EM micro- processor and the ASIC circuit DC94L01. Fig. 3.1/1 Layout of the control board SDCS-CON-2 Fig. 3.1/2 Seven segment display of the SDCS-CON-2 - Digital outputs are forced low. - Programmable analogue outputs are reset to zero, 0V. Seven segment display A seven segment display is located on the control board and it shows the state of drive. Memory circuits and the back-up The program including system and parameter val- ues is stored at Flash PROM D33. Different pro- grams can be downloaded directly to these PROMs. Application functionallity and parameter values are saved in the Flash PROM D35. Fault and Alarm messages -the time of their ap- pearance and some other values like the operating hours and so on- are stored in static RAM circuits. They have a back up capacitor of 1 F, which lasts minimum 8 hours, typically several days. It takes about 30 minutes to charge the backup capacitor. ASIC function ASIC = Application Specific Integrated Circuit Most of the measurements and control functions for the DCS500 are done in the ASIC: - communication with control panel (RS 485) - communication with field exciters (RS 485) - measurement - watchdog function - A/D and D/A-conversion control - thyristor firing pulse generation Watchdog function The control board has an internal watchdog. The watchdog controls the running of the control board program. If the watchdog trips, it has the following effects: - Writing to FPROM is disabled. - Thyristor firing control is reset and disabled. 0.7s 0.7s 0.7s RAM/ROM memory test error During download sequence Normal situation Program is not running Alarm Fault 3 Control boards 3.1 Control Board SDCS-CON-2 1 S1 R2716 2 3 22 23 24 1 X4 X5 X6 X7 10 1 10 1 10 1 8 X3 10 1 X33 X37 X14 X18 X17 X12 X13 X2 ASIC X21 X11 CPU D33 D35 S2A1 B1 A1 B1 B1 A1 2 1 2 1 A1 B1 2 1 2 1 H1 233.5 24 7 2 1 Ch AI2- X3:7 22-23 n. c. to +10V 22 kΩ ->+10V 23-24 * 5 V 12/24 V 5 V 12/24 V 13 mA S1 * 1 2 3 22 23 24 1 2 3 22 23 24 1 2 3 22 23 24 1 2 3 22 23 24 1 2 3 22 23 24 * * 1 5 X16 B1 A1 X1 V260 DDCC+ S2 * S4 * * X34 S4* * 247 TxD RxD 1 5 62 1 7 82 1 7 82 1 7 82 1 5 62 1 5 62 1 7 82 1 5 62 Back up capacitor Jumper coding default value Terminal Input AI2 used for temperature measurement via PTC single ended: Characteristics for pulse encoder inputs All supports are conductive connected to GND differential: Initialisation with default values; read parameters from D33 Normal start; read parameters from D35 after initialisation Tacho (+ and -) connected to AITAC; X3:4 connected to GND Tacho (+ and -) connected to AITAC Position, if SDCS-IOB-3 is connected Bootstrap loader (can only be used with additional hardware and a PC-program) Position of jumpers 1-2, 3-4 is random; 7-8 is parking position for jumper 5-6 blue grey III 3-2 Fig. 3.1/3 Auxiliary power distribution on the board SDCS-CON-2 RS485 serial communication channels The control board has two RS485 channels. The first channel is used for field exciter control of DCF 501B/ 502B, DCF 503A/504A or DCF 601/602 (terminals X16:1...3) and the second for the control panel (CDP) at terminals X33 or X34. The terminals X33 and X34 are wired up in parallel internally. DDCS Channel integrated The control board SDCS-CON-2 has an integrated DDCS (Digital Drive Control System) channel with a tranfer rate up to 4 Mbits/s. This channel (V260) e.g. can be used for fieldbus modules. The terminals X16:4 and 5 are provided for power supply of the modules. Fig. 3.1/5 Connection of the DDCS channel with power supply to the control board SDCS- CON-2 Fig. 3.1/4 Connection for field supply units DCF xxx to the RS485 Communication Interface of the SDCS-CON-2 board. Supply voltage +5 V +15 V -15 V +24 V +48 V1 +48 V2 Undervoltage tripping level +4.55 V +12.4 V - 12.0 V +19 V +38 V +38 V Test terminals X37: B4 / B5 B10 B8 B11 B12 -------- Supply voltage monitoring The control board monitors the following voltage levels: threshold a trip signal is generated. In addition to that there is a monitoring function for the 5 V level. If +5 V drops under the tripping level, it causes a master reset by hardware. All I/O registers are forced to 0 and the firing pulses are suppressed. +48V1 X37X37 +48V2 +24V +15V -15V +5V X37: A12, B12 A13 A11, B11 A10, B10 A8, B8 B2,B3, B4,B5 B8 A7 Reg. X2: SDCS-CON-2SDCS- POW-1 0V AGND A9, B9 0V GND A2,A3, A4,A5 X33:1 X34:1 Reg. B1 Reg. X16:4 Reg. +24 V for RS-485 +24 V Digital output -10V /10 mA ref. source +10V /10 mA ref. source Watchdog For Power Interface board and field exciter For digital input supply For SDCS-CON-2 processor and its periferals 26 wire Flat cable Supply for signal measurments Powerfail prim. ("0" = o.k.) Ref. regul. +24 V for external fieldbus module ≤ 150 mA Auxiliary power distribution The electronic power supply board SDCS-POW-1 (see separate chapter) generates different levels of voltages. Some of them are transferred via the CON-2 board directly to the boards, where they are used, others are manipulated and then transfered. The electronic power supply system with the different voltage levels is monitored in two ways. There is a signal powerfail primary, which monitors the input power supply voltage of the POW-1 board and a signal powerfail secondary, which monitors the low voltage levels. If one voltage level drops below the 1 5 X16 GND µTxD/RxD RS485 RxD TxD  1 5 X16 GND +24 V/≤ 150 mA        III 3-3 Fig. 3.1/6 Terminal connection of the SDCS-CON-2 board Digital and analogue I/O connection of the SDCS-CON-2 Reso- Input/output Scaling Power Common Remarks lution values by mode [bit] Hardware range ±90...270 V 12 + sign ±30...90 V R 2716/ ±20 V ➀ ➁ ➂ ➃ ±8...30 V Software 12 + sign -10...0...+10 V Software ±20 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ 5 * mA for external use 5 * mA e.g. reference pot. 11 + sign -10...0...+10 V Software 5 * mA 11 + sign -10...0...+10 V Software 5 * mA analogue ±3 V fixed 5 * mA 3 V =̂ nom. conv. curr. Encoder supply Remarks Inputs not isolated Impedance = 120  if selected max. frequence 300 kHz Sense lines for GND and supply to correct volt- age drops on cable (only if 5V/12V encoder is in use) 5V/ 0.25 mA * Selectable on POW-1 board 12V/24V 0.2 mA * Input value Signal definition Remarks by 0...8 V Software =̂ "0" status 16...60 V =̂ "1" status Output value Signal definition Remarks by 50 * mA Software Current limit for all 7 outputs = 160 mA Do not apply any reverse voltages! ➀ total smoothing time 2 ms ➁ -20...0...+20 mA by external 500  resistor ➂ 4...20 mA by ➁ + Software function ➃ Remove jumper S4:1-2 and 3-4 if SDCS-IOB-3 is used * short circuit proof (but a short-circuit can cause a malfunction of the drive) The terminal connectors X3: ... X7: and X16: are removable. When connecting the terminal blocks to the CON-2 board, please start with the left connector at first and make sure, that they will be placed on the board in the correct sequence and without spaces in between.     AITAC 90-270 V 30-90 V 8-30 V +24V AI4 ChA + ChA - ChB + ChB - ChZ + ChZ - GND 0 V R2716 +10V S1:23-24 100µ +48 V/ ≤50 mA 100k 1n 1n 100n 100k 100k 100k Power-Source Sense GND Sense Power + 0V AI2 AI3 AI1 - + - + - + - - - + AO1 AO2 +/- I-act 47.5100µ 100n 0V (AOx) +10V 0V -10V DI1 DI2 DI3 DI4 DI5 DI6 DI7 DI8 47.5k 220n10k 4.75k DO4 DO5 DO7 DO1 DO2 DO3 DO6 22 K 3 4 5 8 7 6 7 9 X6:1 2 3 4 5 6 7 8 10 4 5 7 1 2 3 6 4 2 3 6 5 9 10 8 9 10 2 4 5 7 2 3 6 8 9 10 8 X3:1 X4:1 X5:1 X7:  Software +24V 7 8 910 11 12 +24V 13141516 17 18 +24V4 5 6 S1: 1 2 3 S1: GND 1 2 3 45 6 S4 III 3-4 III 4-1 AC Supply voltage Supply voltage 115 V AC 230 V AC Tolerence -15%/+10% -15%/+10% Frequency 45 Hz ... 65 Hz 45 Hz ... 65 Hz Power consumption 120 VA 120 VA Power loss 60 W 60 W Inrush current 20 A / 20 ms 10 A / 20 ms Mains buffering min 30 ms min 30 ms Supply voltage +5 V * +15 V +24 V +48 V2 Test terminals X 5 B X3 A X3 B heat sink T 10 * The 5 volt level can be checked, if 5 volt is selected! 4 Power Supply Board 4.1 Power Supply Board SDCS-POW-1 Fig. 4.1/1 Layout of the SDCS-POW-1 board Output X96-DO8 Potential isolated by relay (NO contact) MOV- element (275 V) Contact rating: AC: 250 V~/ 3 A~ DC: 24 V-/ 3 A- or 115/230 V-/ 0.3 A-) The SDCS-POW-1 board is designed for DCS 500 converter modules and is mounted on the elec- tronic support. This board is used for all types of modules independant from current or voltage range. The SDCS-POW-1 works on a switched mode ba- sis in fly back configuration. It generates all neces- sary DC voltages for the SDCS-CON-2 and all other electronic boards. The input voltage can be selected via the switch SW1 either to 230 V AC or to 115 V AC. The following figure shows the in- structions for the selection of the AC input voltage and for the selection of the encoder supply voltage. If an SDCS-CON-2 (without I/O board IOB-3) to- gether with a pulse encoder is used for speed measurement, the incremental encoder supply volt- age must be selected by jumpers X5, X4 and X3. Backup supply These two terminals are used to add additional ca- pacitance to the existing ones to increase the mains buffering time. More detailed data is avail- able on request via your ABB representative. S D C S -P O W -1 LN X96 X9923 0 V 115 V 2 1 SW1 - + X95 M1 1 X37 13 1426 X5 X4 X3 A B 15V 24V 5 V A B 15 V 24 V AB 15V 24V A B A B 15V 24V A B A B 15V 24V A B 22 0 135 DO8      X5 X4 X3 23 0 V 110 V 23 0 V 115 V 230 V 115 V   T 10 12 V AB 15V 24V A B AC supply selection AC supply Backup supply for SDCS-POW-1 Encoder supply selection Relay output  default value line potential ! Sense- function yes yes no no III 4-2 III 5-1 5 Power interface boards 5.1 Power Interface Board SDCS-PIN-1x The power interface board is used for converter modules model C1. There are 2 different versions in use. The used types are: - SDCS-PIN-11 for 25 A, 50 A and 75 A converters at 500V - SDCS PIN-12 for 50 A converters at 600 V The SDCS-PIN-1x boards consists of: - firing pulse circuits and pulse transformers - measurement of the armature current via current transformers - snubber circuit for thyristors protection (consists of RC circuits and MOV elements) Fig. 5.1/1 Layout of the SDCS-PIN-1x board. - AC and DC high ohmic voltage measurement - heat sink temperature measurement via PTC sensor - scaling for rated current, zero current detection and HW type coding - If the SDCS-PIN-11 connection board is installed in a DCF50x-0025...0075 / DCF60x-0025...0075, then the resistors R113, R116 and R119 are not build-in Note: If this PCB is used as a spare part for a DCF.... , then the resistors R113/R116/R119 (value = 0 ) must be removed. Table 5.1/1 Settings of the SDCS-PIN-1x board if a DCS converter is equipped with it by ABB Board used as a spare part: - default: all jumpers W10-W82 are in condition - ensure the correct converter type related settings Board type PIN 11 PIN 12 Current transformer ratio 1500:1 1500:1 Max. rated voltage [V] 500 500 500 600 Rated current [A] 25 50 75 50 W10 2Q= ; 4Q= ← ← ← ← W15 zero current detection W17 rated current scaling W18 rated current scaling W80 HW type coding W81 HW type coding W82 HW type coding T11 T24 T14 T21,T13 T26,T16 T23 T15 T22 T12 T25 X12 W18,W17,W15 W10 W81 W80X13 1 8 16 T101 T102 T103 SDCS-PIN-1X X22 W82 X121(GND) X122(IACT) U1 C1 V1 D1 W1 R 11 8 R112R115 16 1 8 28 2 PTC 265 R116 R113 R119 XT11 XT24 XT14 XT21 XT13 XT26 XT16 XT23 XT15 XT22 XT12 XT25 line potential ! indicates a removed jumper III 5-2 The power interface board is used for DCS con- verter modules construction type C1 and C2. There are different versions in use. The used types are: - SDCS-PIN-205B for 100 A...1000 A Conv. at 500 V - SDCS-PIN-206B for 110 A...450 A Conv. at 600 V The SDCS-PIN20xB can replace the SDCS-PIN- 20x and PIN-20xA. The SDCS-PIN-20x board consists of: - firing pulse circuits with pulse transformers - measurement of the armature current - snubber circuit for thyristor protection (consists of RC circuits in parallel of the thyristors and RCD network) - AC and DC high ohmic voltage measurement - rated current scaling with burden resistors, zero current detection and HW voltage type coding - interface for heat sink temperature measurement with a PTC sensor - fuses for overvoltage protection and voltage measuring - the same board will be used without any modifi- cation at a converter used for three-phase field supply Fig. 5.2/1 Layout of the SDCS-PIN-20x, 20xA, 20xB board. Spare part The protection of the power part is done by using RC circuits. Snubber circuits are wired up in paral- lel to each thyristor with fuses in between. RCD el- ements are protected by the fuses F 101 to F 103. The AC voltage measurement is taken from behind the fuse. Fuse data: Bussmann KTK-R-6A (600V) The power interface board SDCS-PIN205 can be used as a replacement of SDCS-PIN-21, 22 and 25. The board SDCS-PIN-206 can be used as a re- placement of SDCS-PIN-23 and 24, but not vice- versa! In case of a converter with 450 A / 520 A / 700 A at 500 V or a converter of 450 A at 600 V ad- ditional actions have to be taken into account. 5.2 Power interface board SDCS-PIN-20x SDCS-PIN-20X X121 8 916 X131 8 916 T24 T22 T26 T11 T15 T13 T14 T12 T16 T21 T25 T23 X22 X3 X4 X94 X91 X92 X93 X95 1 2 3 35 35 1 2 3 F101 F102 F103 X121 (IACT) X120 (GND) U1 V1 W1 C1 D1 2 8 0 253 PTC U1 V1 W1 X5 X6 W 10 W 80 W 81 W 82 R 24 8 R 24 9 R 25 0 R 25 1 R 25 2 R 17 9 R 17 8 R 17 7 R 17 6 R 17 5 R 17 4 R 17 3 R 17 2 R 17 1 R 17 0 R 16 9 R 16 8 R 16 7 R 16 6 R 16 5 R 16 4 R 16 3 R 16 2 R 16 1 R 16 0 P126 P127 P123 P122 P125 P124 P131 P130 P128 P129 MOV R 15 1 R 14 9 R 15 0 C 10 8    P125 P124 X94 C1 C108 C109       line potential! III 5-3 Table 5.2/1 Settings of the SDCS-PIN-20xB board for 2-Q converters if a DCS converter is equipped with it by ABB 2-Q Converters Table 5.2/2 Settings of the SDCS-PIN-20xB board for 4-Q converters if a DCS converter is equipped with it by ABB 4-Q Converters B o ar d u se d a s a sp ar e p ar t: - de fa ul t: al l r es is to rs , r ep re se nd in g a ju m pe r W xx / R xx a re in c on di tio n - en su re th e co rr ec t c on ve rt er ty pe r el at ed s et tin gs Board type PIN 205B PIN 206B Current transformer ratio 1000:1 600:1 3000:1 1000:1 600:1 Rated voltage [V] 500 600 Rated current [A] 100 125 180 225 315 405 470 610 740 900 100 245 405 W10 2-Q/4-Q selection W80 HW type coding W81 HW type coding W82 HW type coding R248 HW type coding R249 HW type coding R250 HW type coding R251 HW type coding R252 HW type coding R149 33 Ω zero current detection R150 47.5 Ω zero current detection R151 100 Ω zero current detection R160 1k Ω rated current scaling R161 1k Ω rated current scaling R162 332 Ω rated current scaling R163 332 Ω rated current scaling R164 332 Ω rated current scaling R165 332 Ω rated current scaling R166 332 Ω rated current scaling R167 47.5 Ω rated current scaling R168 33.2 Ω rated current scaling R169 33.2 Ω rated current scaling R170 33.2 Ω rated current scaling R171 33.2 Ω rated current scaling R172 33.2 Ω rated current scaling R173 33.2 Ω rated current scaling R174 33.2 Ω rated current scaling R175 33.2 Ω rated current scaling R176 33.2 Ω rated current scaling R177 10 Ω rated current scaling R178 10 Ω rated current scaling R179 10 Ω rated current scaling Board type PIN 205B PIN 206B 1000:1 600:1 3000:1 1000:1 600:1 500 600 100 140 200 250 350 450 520 680 820 1000 110 270 450 W10 2-Q/4-Q selection W80 HW type coding W81 HW type coding W82 HW type coding R248 HW type coding R249 HW type coding R250 HW type coding R251 HW type coding R252 HW type coding R149 33 Ω zero current detection R150 47.5 Ω zero current detection R151 100 Ω zero current detection R160 1k Ω rated current scaling R161 1k Ω rated current scaling R162 332 Ω rated current scaling R163 332 Ω rated current scaling R164 332 Ω rated current scaling R165 332 Ω rated current scaling R166 332 Ω rated current scaling R167 47.5 Ω rated current scaling R168 33.2 Ω rated current scaling R169 33.2 Ω rated current scaling R170 33.2 Ω rated current scaling R171 33.2 Ω rated current scaling R172 33.2 Ω rated current scaling R173 33.2 Ω rated current scaling R174 33.2 Ω rated current scaling R175 33.2 Ω rated current scaling R176 33.2 Ω rated current scaling R177 10 Ω rated current scaling R178 10 Ω rated current scaling R179 10 Ω rated current scaling Rated current [A] Rated voltage [V] Current transformer ratio indicates a removed jumper III 5-4 Fig. 5.2/2 Typical armature circuit thyristor converter diagram with SDCS-PIN-20B board for a 2Q/4Q C1/C2 type converter V 11 V 24 V 21 V 14 1. 4 2. 1 2. 4 1. 1 2. 6 V 26 V 13 1. 3 2. 3 1. 6 V 23 V 16 2. 2 V 22 V 15 1. 5 2. 5 1. 2 V 25 V 12 KG KGG KG K G KG KG K KG KGG K KGG K X 12 : U 1 V 1 W 1 C 1 (+ ) D 1 (- ) F 10 1 3 S T W A V W 16 U V U U 144 0V 5M / 6M G N D I ID C 8, 13 9, 10 ID C M 11 ,1 2 1 X 4: 3 X 3: 31 N /1 P 1 T 51 P 2 P 2 P 1 T 53 N /1 W 81 A C O D 1 A C O D 2 1513 A N T C 2 1 X 22 : 3 R 57 H W C IN 4 1 W 10 W 80 7 B Z P 4 + 48 V 1 S R 1 G N D I S R 2 B Z P 5 B Z P 6 8, 6101 1 12 ,1 4 4, 29 B Z P 2 B Z P 3 B Z P 1 X 13 : 3 51 0 V + 4 8 V 1 W 82 U A + 6 U A - 15 82 0R 1k 5 3k 3 1k 5 S 1 S 2 S 1 S 2 P E R E V E R S E F O R W A R D 1 2 3 4 5 6 K G KGKKGKGK KGGGKGKG K GKGKG 2. 6 1. 6 2. 5 1. 4 2. 3 1. 2 2. 1 1. 5 2. 4 1. 3 2. 2 H W C D D 5 7 H W C O D 3 5 N C N C 1. 1 F 10 2 F 10 3 6A C 1W 1 V 1 U 1D 1 19173 1293135331192725 X 6: 191731293135331192725 X 5: 6 x 0. 1 µF 6 x 15 Ω C on tr ol b oa rd A rm at ur e c ur re nt m ea su ri ng r es is ta n ce s A C /D C v ol ta ge m ea su rin g ci rc ui ts H W -c o di ng F iri ng p ul se c ha nn el s on ly in c as e of 4 -Q c o nv er te rs se e ta bl e fo r R 1x x P O W E R IN T E R F A C E B O A R D S D C S -P IN -2 0x B se e ta bl e fo r R 2x x III 5-5 5.3 Galvanic isolation - T90, A92 The Galvanic isolation is an option for converters in the current range 2050...5150 A and rated voltages 1000 V. For converters with a rated voltage of 1190 V and 12-pulse serial > 2x 500 V the galvanic isolation is a standard equipment. It is used to re- place the high-ohmic resistance voltage measure- ment and gives the advantage of a total isolation from power part to electronic part. The transformer T90 and the DC transducer A92 are located outside the converter module. The in- ternal AC and DC voltage measurement channels are opened and connected to the T90 and A92 units. Hard and software settings: Voltage coding on measuring board Construction type C4 Conv. nom. voltage [V] * Y=4 (400V) Y=5 (500V) Y=6 (600V) Y=7 (690V) Y=8 (790V) Y=9 (1000V) Y=1 (1190V) Rated mains voltage [V] 220…500 270…600 300…690 350…790 450…1000 530…1190 Value f. conv. nom. volt at SET(TINGS) block * 500 600 700 800 1000 1200 Measuring board SDCS- PIN-52 PIN-51 PIN-51 PIN-51 PIN-51 PIN-51 Resistors W1…W26 all resistors are 0 Ω Galvanic isolation 8680A1/3ADT745047 Resistors Rx on PIN51/52 27.4 kΩ 27.4 kΩ 27.4 kΩ 27.4 kΩ 27.4 kΩ 27.4 kΩ DC transducer A92 8680A1 Switch position RG * 675 V 810 V 945 V 1080 V 1350 V 1620 V Transformer T90 3ADT745047 Secondary Terminals * 2U1 2V1 2W1 2N 2U2 2V2 2W2 2N 2U3 2V3 2W3 2N 2U4 2V4 2W4 2N 2U5 2V5 2W5 2N 2U6 2V6 2W6 2N * 12-pulse serial and sequential have a different selection between Conv. nom. voltage and the scaling of measurement channel. See 12-pulse manual. III 5-6 Fig. 5.3/1 Typical armature circuit thyristor converter diagram with SDCS-PIN-41 and SDCS-PIN-51 boards for a 4-Q C4 type converter with galvanic isolation * V 1 1 V 2 4 V 21 V 14 1. 4 2. 1 2 .4 1 .1 2 .6 V 2 6 V 1 3 1 .3 2. 3 1. 6 V 23 V 16 2 .2 V 2 2 V 1 5 1 .5 2. 5 1. 2 V 25 V 12 KG KGG KG K G K G KG KKG KGG K KG G K X 12 : X 12 : T 90 V 1 W 1 S D C S -P IN -5 1 C 1 (+ ) D 1 (- ) R 11 C 11 C 24 F 1 1 R 13 C 13 C 26 F 1 3 C 15 C 22 R 15 F 1 5 C 14 C 21 F 14 R 14 F 16 C 16 C 23 R 16 F 12 C 12 C 25 R 12 1M B 7 3 S T W A A N T C 2 A 8 U A - U A + V W 1516 6 U V U U 144 B 1 A 6 A 1 A 2 A 7 0V0V 50 0 40 0 50 1 40 1 20 0 30 0 10 0 5M 20 1 30 1 10 1 W 22 W 17 W 2 3 W 1 8 W 6 W 12 W 1 1M W 7 W 1 3 W 2 1M W 1 9 W 20 W 8 W 1 41 M W 3 W 9 W 15 W 4 R19 G N D I ID C 8, 1 3 9, 1 0 ID C M 11 ,1 2 A 5, B 2 560R A 4, B 4 R20 R21 270R 120R A 3, B 3 R10 18RR17 R18 33R 68R R15 R16 18R 18R R13 R14 18R 18R R11 R12 18R 18R 47R 47R 100R 18RR8 R9 18R 18R R6 R7 18R 18R R26 R25 47R 47R R4 R5 18R 18R R2 R3 18R 18R R24 R23 R22 1 X 22 : 3 W 2 1 W 1 1 W 1 6 W 5 1M D 1 C 1 W 1 V 1 U 1 R 57 R1 1 X 25 : 2 X 24 : 21 X 23 : 21 G D W 70 W 81 H W C D D 5 H W C IN 4 17 A C O D 1 A C O D 2 H W C O D 3 15 X 12 : 513 B 8 B 5 W 10 X 12 : B 6 B 1 N C B 2 W 8 0 7 B Z P 4 + 48 V 1 S R 1 G N D I S R 2 B Z P 5 B Z P 6 8, 6 1011 12 ,1 4 4, 29 B Z P 2 B Z P 3 B Z P 1 X 13 : 3 51 4 B 5 0 V F W D + 4 8 V 1 A 5, A 6 A 4 A 7, A 8 A 2, A 3 B 4 B 3 5 6 B 7 B 6 X 13 : B 8 2 31 W 82 W 71 W 83 W 72 0V A 7, B 7 A 1, B 1 A 2 A 8, B 8 A 6, B 6 A 4, B 4 A 3, B 3 X 11 3: A 5, B 5 A 9, B 9 A 10 ,B 10 A 7, B 7 A 1, B 1 A 2 A 6, B 6 A 4, B 4 A 3, B 3 A 8, B 8 A 10 ,B 10 A 5, B 5 A 9, B 9 X 11 3: G A 2. 4 C B C A G B 1. 1 2. 6 G C C C 1. 5 S D C S -P IN -4 1 1. 3 C D G E C E 2. 2 G F A 8, B 8 A 1, B 1 A 2 A 7, B 7 A 9, B 9 A 4, B 4 A 3, B 3 X 21 3: A 10 ,B 10 A 6, B 6 A 5, B 5 C F G D A 2 A 4, B 4 A 3, B 3 A 1, B 1 A 6, B 6 A 8, B 8 A 9, B 9 A 7, B 7 A 10 ,B 10 A 5, B 5 X 21 3: A 2 A 4, B 4 A 1, B 1 A 3, B 3 A 6, B 6 A 8, B 8 A 7, B 7 A 9, B 9 A 10 ,B 10 A 5, B 5 X 21 3: G A 2. 5 C B C A G B 1. 2 2. 3 G C C C S D C S -P IN -4 1 A 2 A 4, B 4 A 3, B 3 A 1, B 1 A 9, B 9 A 7, B 7 A 6, B 6 A 8, B 8 A 5, B 5 A 10 ,B 10 X 11 3: 1. 4 1. 6 C D G E C E 2. 1 G F C F R E V R 24 R 21 R 26 R 22 R 23 R 25 W 2 4 W 25 W 2 6 1k 5 8 20 R 1k 5 3k 3 82 0 R 1 k5 3k 3 8k 2 1k 5 P E T5 1 P 2 40 0 0/ 1 4 00 0/ 1 P 1 T 52 P 2 P 1 S 1 S 2 S 1 S 2 R x R x R x R x R x 10 9 20 17 F 11 F 90 R x so ld er ed re si st or s in p ar al le l t o 5 M Ω h yb rid re si st or s re m ov ed w ire s 2N U 1 S A 92 1 2 S D C S -P O W -1 X 99 :1 X 99 :2 au x. s up pl y 23 0 V A C = = ~ = C on tr ol b oa rd P O W E R I N T E R F A C E B O A R D A rm at u re c ur re nt m ea su ri ng r e si st o rs A C /D C v ol ta ge m ea su rin g ci rc ui ts F iri ng p ul se c h an ne ls H W -c od in g ju m p er s III 5-7 5.3.1 A92 DC-DC transducer (type 8680A1) Fig. 5.3/2 Principle circuit diagram of the DC-DC transducer 8680A1 112.0 10.0 2.0 10 0 .0 Side view 76.0 70.0 50.0 60.0 80 .0 7. 0 5.0 S na p- on m ou nt in g on D IN 4 62 77 r ai l Buttom view Fig. 5.3/3 Dimensions in mm Fig. 5.3/4 Location of terminals Data Selectable voltage gains: 675, 810, 945, 1080, 1215, 1350, 1620 V DC Output voltage: 9,84 V / 5 mA Auxiliary power: 230 V ± 15 %; 50/60 Hz; 3 W Clearence in air: Auxiliary power to Output: >13 mm Input/Output to Auxiliary power: >14 mm Insulation voltage: 2000 V Insulation test voltage: 5000 V Ambient temperature range: - 10 …+ 70 °C Weight: appr. 0.4 kg The voltage gain and frequency response is especially designed for DCS 500B and DCS 600 converters. Ωk Ω6 M17 20 OPAMP TRANSDUCER 1 : 1 9 10 10nF 230 V AC +15V 0V -15V 0V 1 2 Ω6 M RG GAIN 7 STEPS POWER SUPPLY Input voltage Output voltage appr. 3.9 appr. 280nF 20 Gain selector 17 1 2 9 10 RG III 5-8 5.3.2 T90 Transformer (type 3ADT 745 047) Fig. 5.3/5 Principle diagram of the transformer 3ADT 745 047 Fig. 5.3/6 Dimensions in mm Remark The terminals on the primary side of the transformer are in special design (lug ter- minals). Handling hints: First turn the screw conter- clockwise to the end stop, then swing out the shrowding cover. Put in the cable lug, swing in the the shrowding cover and fasten the connection by turning the screw clock- wise. 1U 1V 1W 2N S 2U12U22U32U42U52U6 2V12V22V32V42V52V6 2W12W22W32W42W52W6 1N max 116 m ax 1 10 13 0 118....120 130 80 5.2 x 7.7 Data Selectable transfer ratios Uprim: 502, 601, 701, 800,1000, 1200 V AC rms Output voltage: 7.3 V AC rms Insulation voltage: 3500 V Partial discharge voltage: 1800 V Ambient temperature range: - 10 …+ 70 °C Weight: 2.1 kg III 5-9 5.4 Power Interface SDCS-PIN 41/SDCS-PIN-5x The Power Interface of DCS converter modules model A5 and C4 from 900 A up to 5150 A consists of two boards - the Measuring board SDCS-PIN-5x and the Pulse transformer board SCDS-PIN-41. There are different versions of the SDCS-PIN-5x: SDCS-PIN-51 for converters with all line voltages SDCS-PIN-52 for converters with line volt. 500 V The following figures show the different connec- tions between the SDCS-PIN-41 and SDCS-PIN-5x board depending on the application 2- or 4-quad- rant and the construction type. Converters, delivered from 1998 on, will be equipped with SDCS-PIN-41A, which is a full re- placement for converters, which alredy in use. Fig. 5.4/1 2-Quadrant application, no parallel thyristors - Construction type A5/C4 Fig. 5.4/2 4-Quadrant application, no parallel thyristors - Construction type A5 Fig. 5.4/3 4-Quadrant application, no parallel thyristors - Construction type C4 V14 SDCS-PIN-41 U 1 SDCS-PIN-5x S D C S -C O N -x V 1 W 1 C 1 D 1 X22 X122 X23 X24 X25 X 1 2 S X 1 3 S X 4 13 S X 3 13 S X 1 3 X 5 13 X 1 13 X 2 13 X 4 13 X 3 13 S 2 S 1 T1 T6 T3 T2 T5 X 1 13 C G C G C G C G C G C G V11 V16 V13 V12 V15 X 2 13 T4 X 1 3 X 1 2 X 1 2 X1 13 SDCS-PIN-41 G C G C G C G C G C G C T4 T1 T6 T3 T2 V24 SDCS-PIN-41 U 1 SDCS-PIN-5x S D C S -C O N -x V 1 W 1 C 1 D 1 X22 X122 X23 X24 X25 X 1 2 S X 1 3 S X 4 13 S X 3 13 S X 1 3 X 5 13 X 1 13 X 2 13 X 4 13 X 3 13 S 2 S 1 T1 T6 T3 T2 T5 X 1 13 C G C G C G C G C G C G V11 V26 V13 V22 V15 X 2 13 T4 X 1 3 X 1 2 X 1 2 V25 V12 V23 V16 V21 V14 T5 X 2 13 X2 13 SDCS-PIN-41 G C G C G C G C G C T1 T6 T3 T2 T5 V23 SDCS-PIN-41 B C D E F X 1 13 C G C G C G C G C G C G V13 V22 V12 V25 V15 X 2 13 A U 1 SDCS-PIN-5x S D C S -C O N -x V 1 W 1 C 1 D 1 X22 X122 X23 X24 X25 X 1 2 S X 1 3 S X 4 13 S X 3 13 S X 1 3 X 5 13 X 1 13 X 2 13 X 4 13 X 3 13 S 2 S 1 X 1 3 X 1 2 X 1 2 A C G V24 V14 V21 V11 V26 V16 X 1 13 III 5-10 Measuring board SDCS-PIN-5x This board is always used together with SDCS- PIN-41 board. On this board there are the circuits located needed for current, voltage and tempera- ture measuring and for hardware coding. The current is measured by current transformers at the AC supply, rectified by a diode bridge and scaled with burden resistors to 1.5 V as rated cur- rent. The current response is adjusted by cutting out resistors (R1 ... R21) from the board according to the coding table. The resistors R22 ... R26 are used for the current equal to zero detection. These resistors must be cut off according to a second ta- ble. Voltages (U1, V1, W1 and C1(+) and D1(-)) are measured by using high ohm resistor chains. Scal- ing of AC and DC voltage is done by activating 1 Pulse transformer board SDCS-PIN-41/PIN-41A Fig. 5.4/5 Layout of the SDCS-PIN-51 board for converters with line volt. >500 V M resistors (= cutting out short circuit wires, which are represented by a low ohmic resistance). For the voltage measurement 5 resistor chains are used: U1: W1 to W5 V1: W6 to W11 W1: W12 to W16 C1(+): W17 to W21 D1(-): W22 to W26 If there is a need for voltage adaption, all 5 chains must be handled in the same way. When gavanically isolated measurement is needed, please contact your ABB representative. Note! Actual voltage signals U1, V1, W1, C1(+) and D1(-) of the main circuit are not galvanically isolated from the control board. G4 C4 G1 C1 G6 C6 G3 C3 G2 C2 G5 C5 X113 X1 X213 X2 SDCS-PIN-41 T4 T1 T6 T3 T2 T5 A B C D E F 270 10 0line potential ! Fig. 5.4/4 Layout of the SDCS-PIN-41/PIN-41A pulse transformer board The board contains six pulse transformers with amplifiers. Note For spare part reasons, please use only the SDCS-PIN-51 board! Figure 5.4/6 Layout of the SDCS-PIN-52 board for converters with line volt. 500 V X 41 3 X 31 3 X 21 3 X 11 3 X 51 3 X 13 S2 S1 X23 X24 X25 R1 . . . . . . . R21 X22 X122 X 12 U1 V1 W1 D1 C1 R22 R26 1 2 2 21 1 SDCS-PIN-52 S3 W10 W70 W80 W71 W81 W72 W82 W83 21 3 4 X12S X13S X413S X313S X 41 3 X 31 3 X 21 3 X 11 3 X 51 3 X 13 S2 S1 X23 X24 X25 R1 . . . . . . . R21 X12S X13S X413S X313S X22 X122 X 12 U1 V1 W1 D1 C1 W5 W4 W3 W2 W1 W16 W15 W14 W13 W12 W26 W25 W24 W23 W22 W11 W9 W8 W7 W6 W21 W20 W19 W18 W17 W5 R123 R22 R26 1 2 2 21 1 SDCS-PIN-51 S3 W10 W70 W80 W71 W81 W72 W82 W83 305 10 0 21 3 4 PTC Conductive supports Isolating supports One PTC Two PTC line potential ! see diagram power part III 5-11 Table 5.4/1 Settings of the SDCS-PIN-51 board if a DCS converter is equipped with it by ABB Board used as a spare part: - default: all jumpers Wxx, Rxx are in condition - ensure the correct converter type related settings 2 Q - 4 Q coding 2 Q 4 Q W10 ➀ the converters can be used at lower line voltage then specified by the y-value without hardware modifications, if the nominal line voltage applied to the converter is not lower than 45% for y=5...9 and not lower than 55% for y=4.                                  Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω   Ω R at ed c ur re nt s ca lin g Z er o cu rr en t de te ct io n Voltage coding Construction type A5 C4 Conv. nom. voltage [V] Y=4 (400V) Y=5 (500V) Y=6 (600V) Y=7 (690V) Y=4 (400V) Y=5 (500V) Y=6 (600V) Y=7 (690V) Y=8 (790V) Y=9 (1000V) Value f. conv. nom. volt at SET(TINGS) block 500 600 690 800 1000 Measuring board SDCS PIN-52 PIN-51 PIN-52 PIN-51 PIN-51 PIN-51 PIN-51 W1, 6, 12, 17, 22 W2, 7, 13, 18, 23 W3, 8, 14, 19, 24 W4, 9, 15, 20, 25 W5, 11, 16, 21, 26 0 = HW type coding HW type coding Construction type C4 Current [A] 1200 1500 2000 900 1500 2000 > 2000 * Voltage max. [V] 500 500 500 600/690 600/690 600/690 W70 W71 W72 W80 W81 W82 W83 * see Software description A5           12 34 indicates a removed jumper III 5-12 Fig. 5.4/7 Typical armature circuit thyristor converter diagram with SDCS-PIN-41 and SDCS-PIN-51 boards for a 4-Q A5 type converter * V 1 1 V 2 4 V 21 V 14 1. 4 2. 1 2. 4 1. 1 2. 6 V 2 6 V 1 3 1. 3 2. 3 1. 6 V 23 V 16 2. 2 V 2 2 V 1 5 1. 5 2. 5 1. 2 V 25 V 12 KG KGG KG K G K G KG KKG KGG K KG G K X 12 : X 12 : U 1 V 1 W 1 S D C S -P IN -5 1 C 1 (+ ) D 1 (- ) R 11 C 11 F 1 1 R 13 C 13 F 1 3 C 15 R 15 F 1 5 C 14 F 14 R 14 F 16 C 16 R 16 F 12 C 12 R 12 1M B 7 3 S T W A A N T C 2 A 8 U A - U A + V W 1516 6 U V U U 144 B 1 A 6 A 1 A 2 A 7 0V0V 50 0 40 0 50 1 40 1 20 0 30 0 10 0 5 M 20 1 30 1 10 1 W 22 W 17 W 23 W 18 W 6 W 12 W 1 1M W 7 W 13 W 2 1M W 19 W 2 0 W 8 W 14 1M W 3 W 9 W 1 5 W 4 R19 G N D I ID C 8, 1 3 9, 1 0 ID C M 1 1, 1 2 A 5, B 2 560R A 4, B 4 R20 R21 270R 120R A 3, B 3 R10 18RR17 R18 33R 68R R15 R16 18R 18R R13 R14 18R 18R R11 R12 18R 18R 47R 47R 100R 18RR8 R9 18R 18R R6 R7 18R 18R R26 R25 47R 47R R4 R5 18R 18R R2 R3 18R 18R R24 R23 R22 1 X 22 : 3 W 21 W 11 W 16 W 5 1M D 1 C 1 W 1 V 1 U 1 R 57 R1 1 X 25 : 2 X 24 : 21 X 23 : 21 25 00 /1 P 1 T 5 1 P 2 P 2 P 1 T 53 25 00 /1 G D W 70 W 81 H W C D D 5 H W C IN 4 17 A C O D 1 A C O D 2 H W C O D 3 15 X 12 : 513 B 8 B 5 W 10 X 12 : B 6 B 1 N C B 2 W 80 7 B Z P 4 + 48 V 1 S R 1 G N D I S R 2 B Z P 5 B Z P 6 8 ,6 1011 1 2, 1 4 4 ,29 B Z P 2 B Z P 3 B Z P 1 X 13 : 3 51 4 B 5 0 V F W D + 4 8 V 1 A 5, A 6 A 4 A 7, A 8 A 2, A 3 B 4 B 3 5 6 B 7 B 6 X 13 : B 8 2 31 W 82 W 71 W 83 W 72 0V A 7, B 7 A 1, B 1 A 2 A 8, B 8 A 6, B 6 A 4, B 4 A 3, B 3 X 11 3: A 5, B 5 A 9, B 9 A 10 ,B 10 A 7, B 7 A 1, B 1 A 2 A 6, B 6 A 4, B 4 A 3, B 3 A 8, B 8 A 10 ,B 10 A 5, B 5 A 9, B 9 X 11 3: G A 2 .4 C B C A G B 1 .1 2. 6 G C C C 1. 5 S D C S -P IN -4 1 1. 3 C D G E C E 2. 2 G F A 8, B 8 A 1, B 1 A 2 A 7, B 7 A 9, B 9 A 4, B 4 A 3, B 3 X 21 3 : A 10 ,B 10 A 6, B 6 A 5, B 5 C F G D A 2 A 4, B 4 A 3, B 3 A 1, B 1 A 6, B 6 A 8, B 8 A 9, B 9 A 7, B 7 A 10 ,B 10 A 5, B 5 X 21 3: A 2 A 4, B 4 A 1, B 1 A 3, B 3 A 6, B 6 A 8, B 8 A 7, B 7 A 9, B 9 A 10 ,B 10 A 5, B 5 X 21 3: G A 2 .5 C B C A G B 1 .2 2. 3 G C C C S D C S -P IN -4 1 A 2 A 4, B 4 A 3, B 3 A 1, B 1 A 9, B 9 A 7, B 7 A 6, B 6 A 8, B 8 A 5, B 5 A 10 ,B 10 X 11 3 : 1. 4 1. 6 C D G E C E 2. 1 G F C F R E V R 24 R 26 W 24 W 2 5 W 26 1k 5 82 0 R 1k 5 3 k3 82 0 R 1k 5 3k 3 8 k2 1k 5 S 1 S 2 S 1 S 2 P E T 51 P 2 40 00 /1 40 00 /1 P 1 T 52 P 2 P 1 S 1 S 2 S 1 S 2 X 24 : 21 X 23 : 21 C o nt ro l b o ar d P O W E R I N T E R F A C E B O A R D A rm at ur e c ur re nt m ea su ri ng r e si st a nc es A C /D C v ol ta ge m ea su rin g ci rc ui ts F iri n g pu ls e ch an ne ls H W -c od in g ju m pe rs ty pe s 09 03 to 2 00 3 ty pe s 20 50 to 5 15 0 III 5-13 Data AC input / output voltage: 1-ph / 3-ph; 400 V phase to phase / 230V phase to neutral AC input / output current: 5 A AC peak current: According to fan starting current; external switching device needed AC isolation voltage: 690 V (supply via autotransformer) Load: three phase AC motors or single phase AC motors with starting capaci- tor Frequency: 50 Hz / 60 Hz Output data: passive device; to be used together with DCS electronics only Terminal cross sectional area: X1: power supply; max. 2.5 mm2 X2: to X4: motor connection; 2.5 mm2 Current scaling: burden resistor R100 / R101 / R102; see Fig. 5.5/2 Interconnection: X22:1 to X22:3 at SDCS-PIN20x / 5x X22:3 to X22:1 at SDCS-PIN20x / 5x System configuration: PW 1003 can be cascaded via terminal X23: - X123: Jumpers: S1:1 / S1:2 not used S1:3 / S1:4 adapt the transfer characteristics 5.5.1 PW 1003 This device is designed to be used together with the DCR kit at any type of rebuild application. It can monitor the current of single or three phase fans and it can be cascaded, which means multi- ple devices can be connected to one PTC input to monitor several fan current. The transfer char- acteristic shown at figure 5.5/2 needs to be adapted to the fan current either by changing the burden resistors or by a software parameter, de- pending on the type of fan already used for the existing power part. Fig. 5.5/1 Layout of the PW 1003 X 3:  line potential 1 2 X 1 : 1 3 5 X 4 : 1 2 X 1 23 : 1 X 2: 1 2 R102 R101 R100 S 1 1 X 2 2: 1 3 X 23 : 1 11 0 92 26 31 33.5 11 1 5.5 Fan current monitoring The heatsink temperature of the power part of some DCS converters is monitored via a PTC ele- ment. Other DCS converters check the cooling air temperature and the airflow. The third option is this one, which measures the fan current being within limits. In case the fan current is too low or there is no fan current at all or it is too high, the drive needs to be switched off. The fan current may be too low because - the fan may not be switched on or - any protection device within the fan supply has acted or - a wire is broken or - the propeller became loose or something similar The fan current may be too high because - the fan may be blocked mechanically or - there is a short circuit in the fan winding or some- thing similar The overcurrent during acceleration can be sup- pressed by the software. III 5-14 0 1 2 3 4 5 6 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 default: 1 = 5 A at 60 Ohms default + S1: 3 - 4 Transfer characteristic of PW1003 Fig. 5.5/2 is used to adapt the device PW1003 to the fan current. The X-axis is normalized to 1 and represents the fan current. With a burden resistor of 60 Ohms (equal to default) the 1 is equal to 5 A. The Y-axis is scaled in output voltage (with external pull-up resistor of 2k2 to 5 V) as the output signal to- wards the converter electronics. Values within 2 V and 3 V are of interest, be- cause these values can be set via software as a threshold, using the tempera- ture setting parameter. The converter generates an error message, if the cur- rent is lower / higher than the intersection -parameter value / -selected curve. +90°C +45°C (parameter value) -15°C Fig. 5.5/2 Relationship between fan current and output voltage of PW 1003 III 5-15 5.6 Zero current detection SDCS-CZD-01 This board is used for fast zero current detection especially for three phase field converter in Motor Generator application. The board provides a safe zero current detection also for other very big load inductances. The board is located on SDCS-CON-2 board and plugged on X12, X13 and X17. X17: is only used for mechanical reasons. The electrical function (connection to IOE-1) is un- changed. All DCS/DCF converter are equipped with a zero current detection by monitoring the current signal to a certain level. X 13 :  X 12 : X 17 : MP1 106 47 Fig. 5.6/2 Connection between the SDCS-CZD-01 and SDCS-CON-2 board The CZD-01 board has in addition a cathode / an- ode voltage measurement of all thyristors. The volt- age measurement provides a sharp detection of DC load condition. The requirement for zero current detection is: • actual load current falls below a low treshold • AND upper thristors are blocked (V11,V13,V15..) OR lower thyristors are blocked (V12,V14,V15..) The activation of the board must be set in the soft- ware via parameter: DCF500B 4.19 ZERO CUR DETECT DCF600 43.14 ZERO CUR DETECT Fig. 5.6/1 Layout of the SDCS-CZD-01 board X13: X13: X 23 : X12: X12: X 22 : X17: X17: X 27 :   Fig. 5.6/3 Principle diagram of SDCSCZD-01 MP1 = '1'-signal  no zero current MP1 = '0'-signal  zero current & & MP1 470k to zero current interface D1 (-) C1 (+) U1 V1 W1 voltage detection   current detection  III 5-16 5.7 Power signal measurement board SDCS-MP-1 Fig. 5.7/2 Connection between the SDCS-MP-1 and SDCS-CON-2 board Fig. 5.7/1 Layout of the SDCS-MP-1 board The power signal measurement board SDCS-MP-1 is intended to be used as a service and rebuild (DCR 500 /DCR 600 commissioning) aid. Without this board it is practically impossible to measure with oscilloscope or with general purpose meter signals between the control board and the power interface board(s). The board is plugged to the control board connec- tors X12, X13 and X17. The ribbon cables normally connected to the control board are connected to the measurement board connectors having the same name as the respective connector on the control board. Measurement points for following signals are pro- vided: - the three phase to ground voltages UU, UV and UW - the three phase to phase voltages UVU, UWV and UUW - one rectified and filtered phase to phase voltage UAC - armature voltage UDC with sign filtered - armature current IACT with sign - the six thyristor firing commands BZP1...BZP6 - the two current direction commands SR1 and SR2 (measurement points SR11 and SR21) - the sum of pulse transformer primary currents can be measured accross measurement points SR11-SR12 or SR21-SR22 depending on current direction - the control board ground 0V. The measurement points are separated from the control board signals either with 10 k resistors or with operational amplifiers so that accidental short circuits between the measurement points do not af- fect the converter operation. Measurement point 0V is directly connected to control board ground. SDCS-MP-1X13: X13: X 23 : X12: X12: X 22 : X17: X17: X 27 : SDCS-CON-2 Measurement points X12X13 X17 X 23 X 22 X 27 SDCS-MP-1 S R 11 B Z P 2 B Z P 3 B Z P 4 B Z P 5 B Z P 6 U W V U U W U A C S R 12 S R 21 S R 22 IA C T 0V U V U B Z P 1 Measurement points III 6-1 The converter with a control board SDCS-CON-2 can be connected in 4 different ways to a control unit via analogue/digital links. Only one of the four choices can be used at the same time (Description Analogue I/O´s: standard Digital I/O´s: not isolated Encoder input: not isolated Analogue I/O´s: standard Digital I/O´s: all isolated by means of optocoupler/relay, the sig- nal status is indicated by LED Analogue I/O´s: more input capacity Digital I/O´s: not isolated encoder input: isolated current source for: PT100/PTC element Analogue I/O´s: more input capacity Digital I/O´s: all isolated by means of optocoupler/relay, the sig- nal status is indicated by LED current source for: PT100/PTC element of the I/O's see chapter SDCS-CON-2). In addition to this an extension of I/O´s by SDCS-IOE-1 is pos- sible. Fig. 6/1 I/O via SDCS-CON-2 Fig. 6/2 I/O via SDCS-CON-2 and SDCS-IOB-2 Fig. 6/3 I/O via SDCS-CON-2 and SDCS-IOB-3 Fig. 6/4 I/O via SDCS-IOB-2 and SDCS-IOB-3 6 Digital and analogue I/O boards         SDCS-CON-2       SDCS-CON-2   SDCS-IOB-2   SDCS-IOB-3      SDCS-CON-2  SDCS-IOB-3   SDCS-CON-2  SDCS-IOB-2    III 6-2 6.1 Digital I/O board SDCS-IOB-2 As described at the beginning of the chapter, there are various options for configuring the inputs/outputs. The board IOB-2x has 8 digital inputs and 8 digital outputs. There are three different types existing, which differ at the input voltage level: SDCS-IOB-21 24...48V DC SDCS-IOB-22 115 V AC SDCS-IOB-23 230 V AC The inputs are filtered and galvanically isolated by using opto couplers. Inputs can form two galvanically separated groups by using either X7:1 or X7:2. If these boards are in use, they have to be mounted outside the DCS module. They must be mounted in a way, that the conductive supports have a good con- nection to ground of the installation. Fig. 6.1/1 I/O via SDCS-IOB-2x / IOB-3 and CON-x Fig. 6.1/2 Layout and jumper settings of the SDCS-IOB-2x board The cable length between X1:/X1: and X2:/X2: is 1.7 m and between X1:/X3: is 0.5 m because of EMC reasons.       SDCS-CON-2   SDCS-IOB-2  SDCS-IOB-3   SDCS-CON-2  SDCS-IOB-2    S 8 S 7 R1 SDCS-IOB-2x DI1 R2 R3 R4 R5 R6 R7 R8W 1 3 W 1 1 W 9 W 7 W 5 W 3 W 1 W 2 W 4 W 6 W 8 W 1 0 W 1 2 W 1 4 W 1 5 W 1 6 X6X5X4 X1X3 K1 K2 K3 K4 K5 K8 DI2 DI3 DI4 DI5 DI6 DI7 DI8 DO1 DO2 DO3 DO4 DO5 DO6 DO7 DO8 1 1 1 X7 1 233.5 97 .5 5 4 2ms   10ms DI 7  DI 8  4 * 70 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 5 70 4 time constant   default value input supports are conductive diameter of all supports: 4.3 mm * this dimension may vary (4/5 mm) depending on revision Line potential ! III 6-3 Fig. 6.1/3 Terminal connection of the SDCS-IOB-2x board Note: When the SDCS-CON-2 control board with the SDCS-IOB-2 I/O board is installed, terminals X6: and X7: on the SDCS-CON-2 must not be used. Output value Signal definition Remarks by K1...K5, K8 Software potential-isolated by relays (NO contact element) Contact ratings: AC: 250 V~/ 3 A~ DC: 24 V-/ 3 A- or 115/230 V-/ 0.3 A-) MOV-protected (275 V) K6,7 Software potential-isolated by optocoupler Switching capacity: 50 mA external voltage: 24 V- X4:, X5: are screw-clamp terminal types for leads up to 4 mm² cross-sectional area. Default values are shown within the software diagrams. The ground potential of the digital outputs may vary within ±100 V to each other. Input value Signal definition Remarks by Channel 1...8 potential-isolated by optocoupler IOB-21: (24...48V-) R1...R8 = 4.7 k 0...8 V =̂ "0 signal" 18...60 V =̂ "1 signal" IOB-22: Software (115V~) R1...R8 = 22 k 0...20 V =̂ "0 signal" 60...130 V =̂ "1 signal" IOB-23: (230 V~) R1...R8 = 47 k 0...40 V =̂ "0 signal" 90...250 V =̂ "1 sig." including tolerance; absolute max values X6: / X7: are screw-clamp terminal types for leads up to 4 mm² cross-sectional area Input resistance: see diagram. Input smoothing time constant: see diagram. Smoothing time constant of channel 7 and 8 can be changed; see layout of the board. The functionality of the input channels, which will be read, can be defined by software; default values are shown within the software diagrams Power supply for digital inputs: 48V /  50mA; not galv. isolated from the DCS electronics! If the inputs are supplied from the internal +48 V (X7:3 and/or X7:4) a connection must be done from either X7:1 and/or X7:2 to ground of the DCS 500 modules. In default condition ground is identical to the converter's frame. If the inputs are supplied by any external source (+48 V DC, 115 V AC or 230 V AC) the neutral line / - line must be connected to either X7:1 or X7:2. If the inputs should be controlled with the same voltage level, but from two different voltage sources, having probably two different ground levels, the first neutral line should be connected to X7:1 and the second to X7:2. In this case the jumpers Wx con- necting the inputs to X7:2, but controlled by the source, connected to X7:1, must be cut off. The same method is needed for the other jumpers Wx. High frequency grounding is done by 100 nF capacitor. X4:1 2 3 4 5 6 7 8 X5:1 DO1 DO2 DO3 DO4 DO5 DO6 DO7 DO8 2 3 4 5 6 7 8 K1 K2 K3 K4 K5 K8 DOx 66V 66V DI2 DI4 DI5 DI6 DI7 DI8 3 5 6 8 2 4 W2 W5 W6 W7 W8 W11 W12 X6:1 2 W1 R1 100n 681 + - 681 DIx W3 W4 DI1 DI3 R2 R3 R44 R5 R6 W9 W10 R77 R8 W13 W14 W15 W16 X7:1 100n +48V 3 +   Software +48V III 6-4 6.2 Analogue I/O board SDCS-IOB-3 As described at the beginning of the chapter, there are various options for configuring the inputs/outputs. The board SDCS-IOB-3 consists of the 5 analogue inputs, 3 analogue outputs, the galvanical isolated pulse encoder interface and a current source for temperature measuring devices. If these boards are in use, they have to be mounted outside the DCS module. They must be mounted in a way, that the conductive supports have a good con- nection to ground of the installation. The cable length between X1:/X1: and X2:/X2: is 1.7 m and between X1:/X3: is 0.5 m because of EMC reasons. Fig. 6.2/2 Layout and jumper settings of the SDCS-IOB-3 board Fig. 6.2/1 I/O via SDCS-IOB-2x / IOB-3 and CON-x   SDCS-IOB-3      SDCS-CON-2  SDCS-IOB-3   SDCS-CON-2  SDCS-IOB-2    T1 X3 X4 X5 X1 X2 S2 S3 S1 S10 SDCS-IOB-3 AITAC AI1 AI2 S1:1-2 S1:3-4 S1:5-6 S2 AI3 S1:7-8 Ch AI4 S1:9-10 1 13 142 1 2 22 23 S4 12 21 11 R110 S5 1 2 43 3 24 V17 1 1 1 12 1012 S1:11-12 S1:13-14 PTC 1.5 mA PT100 5 mA * 12 V S4 S5 S1 S2 S3 24 V 5 V * * * * *** * ** 85 233.5 5 4 70 S10 * * S2 S3S3 5 V 12/24 V 5 V 12/24 V 13 mA 2 3 1 23 24 22 2 3 1 23 24 22 2 3 1 23 24 22 2 3 1 23 24 22 2 3 1 23 24 22 1 78 2 1 78 2 1 3 5 7 9 11 2 4 6 8 10 12 1 3 5 7 9 11 2 4 6 8 10 12 1 3 5 7 9 11 2 4 6 8 10 12 1 2 43 1 2 43 7 5 3 1 8 6 4 2 7 5 3 1 8 6 4 2 7 5 3 1 8 6 4 2 7 5 3 1 8 6 4 2 x x x 4 5 70 gain = 1 -10V..+10V gain = 10 -1V..+1V Sum I AC not equal to 0 activation of 500 Ω between input terminal Jumper coding conductive supports Characteristics for pulse encoder inputs single ended: differential: Pulse encoder supply Temperature sensor supply Functionallity of analogue inputs default value III 6-5 Fig. 6.2/3 Terminal connection of the SDCS-IOB-3 board Note: When the SDCS-CON-2 control board with the SDCS-IOB-3 I/O board is installed, the connection through plugs S4:1-2 and 3-4 on the SDCS-CON-2 must be severed. Terminals X3:, X4: and X5: on the SDCS-CON-2 must not be used. Reso- Input/output Scaling Power Common Remarks lution values by mode [bit] Hardware range 12 + sign -10...0...+10 V Software ±20 V ➀ ➁ ➂ ➅ 12 + sign -10...0...+10 V Software ±20 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ ➃ ➄ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ ➃ ➄ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software 5 * mA 11 + sign -10...0...+10 V Software 5 * mA analogue -10...0...+10 V R 110 5 * mA gain: 0.5...5 5 * mA for external use 5 * mA e.g. reference pot. 1.5 mA Curr. source for PTC 5 mA Curr. source for PT100 Encoder supply Remarks Inputs isolated; Impedance = 120 , if selected max. frequence 300 kHz Sense lines for GND and supply to correct volt- age drops on cable (only if 5V/12V enc. is in use) 5V/ 0.25 A * Incremental encoder power supply 12V/24V 0.2 A * Earth fault protection is based on a sum current transformer where the secondary is connected through 100 resistor to a diode bridge. Voltage will appear across the resis- tor, if the sum of the 3 phase current is not zero. Restrictions using jumper S1, S2 or S3: The selection for the burden resistor across the input terminals can be done independent from S2 or S3 settings for inputs AITAC, AI1, AI2, AI3 and AI4. If the gain is set to 10 by using S2 or S3 and the 500  burden resistor is activated, the input signal level is changed to -2 mA...0...+2 mA. For input AI4 there are the following configurations available: - input range ”20mA” , or - input range ”10V”, or - earth fault monitoring by Isum not equal to zero ➀ total smoothing time 2 ms ➁ -20...0...+20 mA by setting S1 ➂ 4...20 mA by ➁ + Software function ➃ -1...0...-1 V by setting S2/S3 (CMR ±10 V) -2...0...-2 mA by setting S2/S3 + S1 (CMR ±10 V) ➄ designated for PT100 evaluation per software and hardware ➅ If the input is used for tacho feedback and the tacho voltage needs to be scaled, the board PS5311 must be ordered separate. If this input is used for feedback sig- nals, there is a need for any additional margin of over- shoot measurements. This margin is set by software and results e.g. in the 8 to 33 volts at PS5311. * short circuit proof +10V 0V -10V AO1 AITAC AO2 +/- I-act AI4 GND 0V 3 V = I NDC 100k 1n 1n 100k 100k 100k Power- Source Sense GND Sense Power + 0V AI2 AI1 - + - + - + - + 500 S1 1 2 3 4 7 8 9 10 12 14 1311 100 S1 x R1100V 0V 1.5 mA 5 mA 1 2 3 4 S5 S4 V17 4 5 7 X5:1 2 3 6 8 9 10 3 4 5 6 7 8 9 10 X4:1 2 11 12 8 7 4 X3:1 2 3 6 5 9 10 11 12   SoftwareSDCS-CON-x + 5 6 ~ ~ 47.5100µ 100n 47.5100µ 100n 100µ ChA + ChA - ChB + ChB - ChZ + ChZ - +24V 7 8 910 11 12 +24V 13141516 17 18 +24V4 5 6 S10 1 2 3 S10 AI3 - x10 S2 S3 x10 PS5311 TG + - 81-270V 25-90V 8-33V R9 X2:3 X2:4 8 7 4 X1:1 2 3 6 5 6 X2:3 4 5 8 7 III 6-6 Fig. 6.2/4 Connections incremental encoder - electronics 0 65535 Forward Connecting a pulse encoder to the DCS 500B / DCS 600 converter The connection diagram for a pulse encoder to the electronics of a DCS converter is quite similar, if the SDCS-CON-2 or the SDCS-IOB-3 is used. The basic difference between these 2 boards is the galvanical isolated circuit on the SDCS-IOB-3 board. Power supply for incremental encoder There is a galvanically isolated power supply for the incremental encoder on SDCS-IOB-3. The jumper S4 on this board is used to select either +5 V, +12 V or +24 V as a supply voltage for the pulse encoder. When LED indicator (V17) is lit, the supply is OK. The pulses generated by the pulse encoder are transferred to the pulse receivers via opto couplers. If the SDCS-CON-2 board is used the supply voltage for the pulse encoder is selected on the SDCS-POW- 1 board (refer to SDCS-POW-1). In both cases the voltage regulator has a feedback control with Sense power and Sense GND signals. Feedback connection is recommended when power supply level for differential pulse encoder is 5V. If a 12 V pulse encoder type is in use the sense function is also available. The wiring is shown on figure 6.2/4. Fig. 6.2/5 TACHO_PULSES signal A A B B Z Z +U 0V X5:2 X5:1 X5:4 X5:3 X5:6 X5:5 IOB-3 X5:7 X5:10 X5:8 X5:9 GND ChA+ ChA- ChB+ ChB- ChZ+ ChZ- A A B B Z Z +U 0V X5:2 X5:1 X5:4 X5:3 X5:6 X5:5 IOB-1/ CON-2 X5:10 X5:7 X5:9 X5:8 X5:2 X5:1 X5:4 X5:3 X5:6 X5:5 X5:7 X5:10 X5:8 X5:9 GND ChA+ ChA- ChB+ ChB- ChZ+ ChZ- X5:2 X5:1 X5:4 X5:3 X5:6 X5:5 X5:10 X5:7 X5:9 X5:8 IOB-3 IOB-1/ CON-2 = twisted pair DIFFERENTIAL SINGLE-ENDED Power source Sense power Sense GND Power source Note: If the drive’s direction of rotation is correct (if ne- cessary, correct by exchanging the field connec- tions), the Tacho error message may appear du- ring start-up. If with a positive reference the TACHO_PULSES signal (with software 21.xxx: parameter 12104) does not look like the illustration below, then tracks A and A must be mutually exchanged with enco- ders with inverted signals, and tracks A and B with encoders without inverted signals. If the TACHO_PULSES signal is missing or non-li- near, the encoder’s pulses are not being read cor- rectly. Possible reasons for this may be the enco- der supply, the encoder itself, or the wiring. III 6-7 Incremental encoder Two different incremental encoder connections are available. - differential connection; pulse encoders generating either voltage or current signals can be used - single-ended (push pull) connection; voltage si- gnals Restrictions using jumper S1: or S10: depending on the board Line termination via S1/S10: 2-3 / 8-9 / 14-15 should not be used at 12 V or 24 V encoders, because of the power consumption taken from the encoder. If a pulse encoder with a build in current source is used a burden resistor of 120  is activated via jumper S1/ S10: 1-2 a.s.o. Fig. 6.2/6 Pulse encoder connection principles If a single ended 12 V / 24 V encoder is used S1/S10 should be set to 5-6 / 11-12 / 17-18 according to the layouts of the boards. This setting results in an internal threshold of appr. 5 V. In case of a single ended 5 V encoder the jumpers will be set to a neutral position S1/ S10: 4-5 / 10-11 / 16-17. To get a threshold lower than 5 V each terminal X5:2 / X5:4 / X5:6 / X5:7 must be connected via a resistor according to the table below. R 1 k 1.5  2.2 k U thresh 1.2 V 1.8 V 2.3 V Three differential inputs are reserved for connecting the pulse encoder. CH A and CH B are the normal pulse channels having nominal 90° phase shift between the channels. The channel CH A- (CH B-) is the inversed channel CH A (CH B). CH Z is the zero pulse channel which can be additionally used if the encoder has an output giving one “zero” pulse per revolution. The distance between pulse encoder and interface board is dependent on the voltage drop on the connecting lines and on the output and input configuration of the used components. If cables are used according to the next table the voltage drop caused by the cable can be corrected by the voltage regulator. Cable length parallel wires for Cable used power source & GND 0 ... 50 m 1x 0.25 mm² 12x 0.25 mm² 50 ... 100 m 2x 0.25 mm² 12x 0.25 mm² 100 ... 150 m 3x 0.25 mm² 14x 0.25 mm² -U +U CH+ CH- SDCS-IOB-1/ CON-2 / IOB-3 + + +24V X5:1 X5:2 S1: (S10:) 1 2 3 4 5 6 differentialsingle ended III 6-8  SDCS-IOE-1         SDCS-CON-x 4 x an al og 1 x T ac ho 7 x di gi ta l 8 x di gi ta l 2 x an al og P ul sg eb er 6.3 Extension board SDCS-IOE-1 The board consists of: 7 isolated digital inputs 2 analogue inputs 1 current source for the supply of PTC or PT 100 elements The board is connected electrically via a 10 pin flat cable to the converter module electronics. The con- nection will be done to the SDCS-CON-x board from terminal row X17 to X17 on SDCS-IOE-1. It has to be mounted outside of the converter module. The cable length is 2 m because of EMC reasons. Mechanical Construction The board is mounted on a plastic housing which has foot elements (Phoenix Contact series UMK). The foot elements permit snap-in assembly to a standard DIN EN rail (EN 50022, 50035). The dimensions are including the plastic housing. Fig. 6.3/2 Layout and jumper settings of the SDCS-IOE-1 board Fig. 6.3/1 Connection of the SDCS-IOE-1 board and the SDCS-CON-x board.   X17 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 X2 S1 S2 S4S3 H1 H2 H3 H4 H5 H6 H7 AI5 AI6 S1:3-4 S2:3-4 S3 Ch PTC 1.5 mA PT100 5 mA      S3 1 2 43 1 2 43 2 4 6 8 1 3 5 7 8 21 7 1 2 43 1 2 43 1 2 43 S2:1-2 S1:1-2 2 4 6 8 1 3 5 7 146.3 90 X1 3 8 1 4 gain = 1 -10V..+10V gain = 10 -1V..+1V Jumper parking activation of 500 Ω between input terminal  Temperature sensor supplyFunctionallity of analogue inputs default value P la st ic h ou si ng M ou nt in g fo r D IN -r ai l III 6-9 Fig. 6.3/3 Terminal connection of the SDCS-IOE-1 board Input value Signal definition Remarks by 0...8 V Software =̂ "0" status 16...31 V =̂ "1" status Two potential isolated groups. Max. operating voltage between the groups and the control board is 50 V Filter time constant for all inputs is 2.2 ms Reso- Input/output Scaling Power Common Remarks lution values by mode [bit] Hardware range 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ 11 + sign -10...0...+10 V Software ±40 V ➀ ➁ ➂ ➃ 1.5 mA Curr. source for PTC 5 mA Curr. source for PT100 absolute accuracy in- cluding the control- board is 0.7% ➀ total smoothing time 2 ms ➁ -20...0...+20 mA by setting S1/S2 ➂ 4...20 mA by ➁ + Software function ➃ -1...0...-1 V by setting S3 (CMR ±10 V) -2...0...-2 mA by setting S3 + S2 (CMR ±10 V)   SoftwareSDCS-CON-x DI10 DI12 DI13 DI14 DI15 3 5 6 8 X1:1 2 DI9 DI11 4 7 2.2k 47n 2.2k 681 H1 + 10 9 GND AI5 100k 1n 1n 100k 100k 100k AI6 - + - + 500 S1 3 4 3 4 x10 S3 8 7 4 X2:1 2 3 6 5 9 10 S2 1.5 mA 5 mA 3 4 S4 100µ 0V 0V 1 2 for cable shields for cable shields for cable shields III 6-10 III 7-1 cannot be used together with software version S21.xxx. Channel 3 is a DDCS channel of up to 4 Mbits/s and is used if a serial link based on PROFIBUS hardware, CS31 hardware or MODBUS hardware should be realized. If one of these possibilities should be used an adaptation module is needed. Please refer to the documentation which is availa- ble for the link system needed. Fig. 7.1/1 Connection between SDCS-COM-x and a partner Fig. 7.1/2 Layout and jumper settings of the SDCS-COM-5 board This board is used for communications to DCS 500 converter modules for commissioning and mainte- nance purposes. It consists of 3 different communi- cation channels. All RxD channels (receiver) have blue color, all TxD channels (transmitter) have grey color. If any connections should be made always connect the same color with each other (plug and socket) . Channel 1 is a HDLC channel of 1.5 Mbits/s and is used for the communication with a PC. Channel 2 RxD TxD SDCS-COM-x       Partner V3 V4 V1 V2 V5 V6 D8 D11 S1 SDCS-COM-5 X11 CH 3 RxD TxD CH 1 RxD TxD CH 2 RxD TxD D7     1 2 3 4  156.5 83 .5 1 3 24 1 3 24 1 3 2 4 1 3 2 4 1 3 2 4 Coding for channel 2 Converter number   default value conductive support 7 Communication boards 7.1 Communication board SDCS-COM-5 III 7-2 Fig. 7.2/1 Layout of the SDCS-AMC-DC / SDCS-AMC-DC Classic board / AMC-DC Drive Bus This board must be used together with a DCS 600 module equipped with a SDCS-CON-2 board inclu- ding software S15.xxx. The board is equipped with an own controller with the following main functionalities: • The software structure implemented in this board is divided in two sections. The first section is built from the speed regulator and its additional functions which is producing the torque refe- rence. • The second section is prepared to be program- med with its own characteristics for control and regulation. • Evaluation of the received data to produce a tor- que reference to be transmitted to the controller 7.2 Control and communication board SDCS-AMC-DC board CON-2. Actual values from the CON-2 are read, evaluated and retransmitted to the overri- ding control. Furthermore the board is equipped with three opti- cal channels (max. data transmission speed is 4 Mb for each optical channel): - Channel 0 is used to communicate data from the overriding control (APC2 or via adapter modules from other controllers) to the DCS600-drive. - Channel 2 (Master-Follower) is used to operate two or more drives dependent on each other. Commands and values needed for this applicati- on are produced on this board. - Channel 3 is prepared to connect the PC tool for commissioning and maintenance. Remark: Only channels with the same compon- ents (e.g. 10 Mb component) may be connected to each other. optical Components Channel 0 used for D400 driver current Communication ** Ch 0 Ch 2 Ch 3 CHO, CH2, CH3 CH0 SDCS-AMC-DC * 10 Mb 5 Mb 10 Mb other interfaces ICMC1 30 mA DDCS SDCS-AMC-DC Classic * 5 Mb 10 Mb 10 Mb Fieldbus adapter modules NxxA-0x ICMC1 30 mA DDCS SDCS-AMC-DC 2 10 Mb 5 Mb 10 Mb other interfaces ICMC2 30/50 mA *** DDCS/Drive Bus SDCS-AMC-DC Classic 2 5 Mb 10 Mb 10 Mb Fieldbus adapter modules NxxA-xx ICMC2 30/50 mA *** DDCS/Drive Bus * SDCS-AMC-DC 2, SDCS-AMC-DC Classic 2 are direct replacements of SDCS-AMC-DC and SDCS-AMC-DC Classic ** see additional parameter [71.01] Color of optical components: 5 Mb  blue maximum 30 mA *** 10 Mb  dark grey maximum 50 mA *** The SDCS-AMC-DC and the SDCS-AMC-DC Clas- sic boards are identical except the assembly of optical components for channel 0 and 2. D200 SDCS-AMC-DC X10 CH 3 TxD RxD CH 2 TxD RxD CH 0 TxD RxD D105 156.5 83 .5 D400 D100 conductive support      5V o.k. Prg. running Fault green red green           III 7-3 Fig. 7.2/2 Connections at Master-Follower mode Fig. 7.2/3 Module Bus connections to Advant controllers (ring feeder) Fig. 7.2/4 Drive Bus connections to Advant Controller 80 For more configuration possibilities see publication 3AFE 63988235 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 FCI AC70 AC80 T xD R xD . . . TB 810 20 m - AMC-DC 30 m - AMC-DC 2 or A M C -D C 2 or A M C -D C 2 or A M C -D C 2 plastic optic fibre D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 . . . 20 m SDCS-AMC-DC 30 m SDCS-AMC-DC 2 T xD R xD T xD R xD T xD R xD NDBU-950, 1, 2 ... ...8 T xD R xD . . . AC80 T xD R xD Ch0 Drive Bus or A M C -D C 2 or A M C -D C 2 or A M C -D C 2 30 m plastic optic fibre plastic optic fibre D 20 0 S D C S -A M C -D C X 10 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 10 5 D 40 0 D 20 0 S D C S -A M C -D C X 10 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 10 5 D 40 0 D 20 0 S D C S -A M C -D C X 10 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 10 5 D 40 0 10 m - AMC-DC / DC 2 20 m - AMC-DC Classic plastic optic fibre III 7-4 Fig. 7.2/5 Connections to higher-level system (APC) Fig. 7.2/6 Connections to higher-level system (Communication modules) Fig. 7.2/7 Connections to PC by ring feeder (with control program DriveWindow) D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 YPQ112 B T xD R xD T xD R xD T xD R xD T xD R xD APC . . . 20 m or A M C -D C 2 or A M C -D C 2 or A M C -D C 2 plastic optic fibre NxxA-0xNxxA-0x T xD R xD D 20 0 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 S D C S -A M C -D C C la ss ic D 20 0 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 S D C S -A M C -D C C la ss ic D 20 0 C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 S D C S -A M C -D C C la ss ic T xD R xD NxxA-0x T xD R xD . . . . . . 10 m Fieldbus or A M C -D C C la ss ic 2 or A M C -D C C la ss ic 2 or A M C -D C C la ss ic 2 plastic optic fibre D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 T xD R xD . . . 20 m SDCS-AMC-DC / AMC-DC Classic 30 m SDCS-AMC DC 2 / AMC-DC Classic 2 (Laptop) NISA-03 (PC) NDPC-12 NDPA-02 or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 plastic optic fibre III 7-5 Fig. 7.2/8 Connections to PC by by star-type network (with control program DriveWindow) For more configuration possibilities see publication 3ADW 000100R0201 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 D 20 0 S D C S -A M C -D C C H 3 T xD R xD C H 2 T xD R xD C H 0 T xD R xD D 40 0 T xD R xD T xD R xD T xD R xD . . . NDBU-950, 1, 2 ... ...8 T xD R xD . . . T xD R xD T xD R xD T xD R xD T xD R xD T xD R xD T xD R xD . . . . . . T xD R xD T xD R xD 20 m SDCS-AMC-DC SDCS-AMC-DC Classic 30 m SDCS-AMC-DC 2 SDCS-AMC-DC Classic 2 max. 30 m . . . NDBU-950, 1, 2 ... ...8 NDBU-950, 1, 2 ... ...8 (Laptop) NISA-03 (PC) NDPC-12 NDPA-02 HCS Silicat max. 200 m Plastic opt. fibre Branching unit Branching unit Plastic opt. fibre Branching unit Plastic opt. fibre P C b oa rd or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 or A M C -D C 2 or A M C -D C C la ss ic or A M C -D C C la ss ic 2 max. 30 m or 200 m HCS III 7-6 DDCS Branching Unit (DBU) is used (only for DCS 600/DCF 600) to implement the star topology of DDCS link. This allows a slave unit to fail or become unpowered without disabling the communication. The NDBU receives messages from the master (PC) and sends them to all the slave units simultaneously. Each slave unit has an individual address and only the addressed slave unit sends a reply message to the master. It is also possible to use NDBU thus enabling peer-to-peer communication. 7.3 DDCS Branching unit NDBU-95 NDBU-95 DDCS Branching Unit has nine output channels where messages from the master are sent. The reply message sent by one slave unit is delivered to the master and it can be delivered also to other slaves if necessary. Several NDBU-95s can be used in parallel, in series or in any combination of these. The maximum distance between the master and NDBU-95 as well as between two NDBU-95s, see manual 3ADW000100R0201. Technical specifications Optical links: Master channels 1 DDCS input and 1 DDCS out- put Slave channels 9 DDCS inputs and 9 DDCS outputs Data rate 1 - 4 MBd, programmable Driving current 20 mA, 30 mA, 50 mA + chan- nel disabling, programmable Monitoring a green LED for each channel, switched on when NDBU is re- ceiving messages Transmission device 10 Mb component for each channel Power supply: Input voltage +24 VDC ± 10% Input current 300 mA Monitoring a green LED switched on when the output voltage is normal Operating temperature: +0 ... +50 °C PCB dimensions: s. diagram beside For further information see Appendix D in the DriveWindow User's Manual. Fig. 7.3/1 Layout of the NDBU-95 branching unit Note For addressing and automatic node numbering of the drives and branching units see DriveWindow documentaion. 264 V120 V119 V118 V117 V116 V115 V114 V113 V112 V111 V110 V109 V108 V107 V106 V105 V104 V103 V102 V101 X1 8 1         RXD  24 V DC S1 NDBU-95 DDCS BRANCHING UNIT, 8+1 CH  1 2 0 V TXD RXD TXD RXD TXD RXD TXD RXD TXD RXD TXD RXD TXD RXD TXD TXD RXD TXD RXD +5V OK X2- X11 TRANSM SETTING DIS LONG MEDIUM SHORT 1 0 ADDRESS + + + + + + + + X12 + + + + + + + + 1 2 4 MBIT/S 41 94 DBU Remark: Only channels with the same compon- ents (e.g. 10 Mb component) may be connected to each other. III 8-1 8 Field exciters 8.1 SDCS-FEX-1 (internal) The Diode Field Exciter board SDCS-FEX-1 is a single phase diode rectifier for an AC input voltage up to 500 V and a DC output current of 6 A. The board has to be mounted inside the armature con- verter module. The excitation current is defined by the DC output voltage (line voltage multiplied by 0.9) and the resistance of the field winding. By us- ing an external resistor in series with the field wind- ing the field current can be adapted slightly. If the SDCS-FEX-1 board isn't already installed it must be mechanically fixed beside the electronic power part SDCS-POW-1 and connected via a flat cable to the SDCS-CON-x by using terminal X14. 8.1.1 Electrical data of FEX-1 AC input voltage: 110 V -15%...500 V +10% max. DC output current: 6 A; IF rated DC output curr. monitoring: 20 mA...6 A Power loss at IF rated : 10 W AC Isolating voltage: 600 V Terminals X1: Cross sectional area 2,5 mm² Fig. 8.1/3 Output voltage with inductive or resistive load - High-signal at X14:B3 Fig. 8.1/2 Diode field exciter with field loss monitoring Fig. 8.1/1 Layout of the SDCS-FEX-1 field exciter board The DCS 500 system has different options for the field supply. There are one and three phase field exciters available, which can be either integrated (diode field exciter SDCS-FEX-1 and half controlled field exciter SDCS-FEX-2) or externally mounted (half controlled DCF503-0050 with the SDCS-FEX- 32 board and fully controlled DCF504-0050 with the SDCS-FEX-31 board). Three phase field exciters DCF 50xB/60x are con- verter modules themselves, similar to the DCS 501B/601 or DCS 502B/602 additionally a overvol- tage protection unit is needed see chapter 8.4. The AC share of the output DC voltage is meas- ured with a capacitor and an auxiliary rectifier and used for current monitoring. Transistor relay is closed when the DC current is flowing (>0.02 A). Fig. 8.1/4 Output voltage without load Low-signal at X14:B3 X1: X14: V1 - + SDCS-FEX-1 1 5 3 7 F- F+ 8 0 130 Fixed isolating supports (15 mm) line potential ! S DC S -FE X -1 X1: 3 F+ F- 5 X1: 1 7SDCS-CON-x X14: 9 3 + -X14: A4 B3 + 15 V CONVERTER MODULE t U U t III 8-2 The field exciter board SDCS-FEX-2 / FEX-2A con- sists of a power part and a control board,which connects all components electrically and mechani- cally to each other. This arrangement has to be mounted inside the armature converter module be- side the electronic power supply SDCS-POW-1. This is intended to be done for DCS modules of type C1, C2 and A5, not for C4! The power part is build up with two power modules. Each of the modules consists of one diode and one thyristor, so they are wired up and controlled like a half controlled bridge. Fig. 8.2/1 Layout of the SDCS-FEX-2 field exciter board 8.2.1 Electrical data of SDCS-FEX-2 / FEX-2A AC input voltage: 110 V -15%...500 V +10%; single phase AC input current:  output current AC isolation voltage: 600 V Frequency: same as DCS converter module DC output current: ➀ 0.3 A...8 A for armature converter module from 25 A to 75 A 0.3 A...16 A for armature converter mod. from 100 A to 2000 A Power loss at IF rated : 40 W Output IACT: Uout = 4 V *Iact / Ilim; Ilim = 3A, 5A, 7A, 9A, 11A, 13A, 15A, 17A Terminal X1: Cross sectional area 4 mm² ➀ If Field weakening is needed, actual field current of the motor at top speed must be higher than 0.3 A The control is based on a fully digital system. The µ-processor reads all information from the power part, is supplied with all needed voltage levels and control signals via the flat cable X14 by the SDCS- CON-x and generates the firing pulses for the pow- er part. The range of the single phase rated AC input volt- age is 110 V to 500 V, the maximum current capa- bility is 16 A. If this field exciter is used for smaller field current, the control unit automatically selects a lower current range between 3 A to 16 A to get the best resolution. 8.2 SDCS-FEX-2 (internal) 1 5 10 6 V11 V13 X1: X14:T11 T13 T1 X20 D37 SDCS-FEX-2 1 8 1 5 3 7 F- F+ IACT GND 90 240 Conductive supportFixed isolating supports (15 mm) line potential ! III 8-3 8.2.2 Control unit The control unit includes the following main blocks: - Micro controller 80C198 for controlling and firing - Actual DC current measurement with an AC current transformer. - RS485 interface to the converter's controller board SDCS-CON-x. The software for the field current control is stored in the ROM memory of the 80C198. The control is done by using a PI structure for the current control- ler. All parameters needed for the control or for scaling reasons (selection of burden resistors) are stored in the non-volatile memory of the armature converter and transferred to the field controller dur- ing each initializing process via the RS485 link. The Node number is always fix coded to Node number = 1. The output Iact represents the actual field current, which is measured via the AC transformer, then rectified and transferred into a voltage signal with burden resistors. The burden resistors, as men- tioned before, are adapted by the board itself de- pending on the setting of the nominal field current of the motor (see list before). The resulting burden voltage can be measured at test terminals beside X14:. The 2.2 K resistor allows a short circuit at the terminals; the external measuring device should have an internal resistance higher than 1M. The terminal row X20: is used for test purposes. 8.2.3 Power section Two diode-thyristor modules are arranged as a half-controlled single-phase rectifier. The anodes of the two diodes are not connected directly to each other as usual; they are now connected to the ends of the four turn primary winding of the current trans- former. The centre tap is the negative output of the rectifier. Thus it is possible to measure the DC cur- rent with an AC current transformer. A MOV (Metal Oxide Varistor) protects the AC input against voltage spikes from the external source. Another MOV protects the DC output against volt- age surges which can be caused by the field wind- ing of a DC machine. Fig. 8.2/2 Block diagram of the field exciter SDCS-FEX-2 Synchronisation T1 2k2 burden adjustment AC Input DC Output Power supply voltages +48V, +15V, -15V, +5V, 0V Control unit from SDC S-CON-x via X14: RS 485 Serial link III 8-4 The half controlled field exciter unit DCF503A- 0050 consists of the SDCS-FEX-32A board, two thyristor/diode power modules and auxiliaries (po- wer supply, line choke). The full controlled field exciter unit DCF504A-0050 consists of the SDCS- FEX-31A board, four anti-parallel thyristor/ thyristor Fig. 8.3/2 Layout of the DCF504A-0050 field exciter unit Fig. 8.3 /1 Different versions of power section of the DCF50xA-0050 power modules and the same auxiliaries. The control is structured similar to the SDCS-FEX- 2 field supply. A micro controller is used for control- ling and firing. The DC current is measured by us- ing an AC current transformer (same configuration than at SDCS-FEX-2). 8.3 DCF503A-0050 and DCF504A-0050 (external) 8.3.1 Electrical data of DCF50xA-0050 Power part AC input voltage: 110 V -15%...500 V +10%; single phase AC input current:  output current Frequency: same as DCS converter module AC isolation voltage: 690 V Line reactor: 160 H; 45-65 Hz DC output current: ➀ 0.3...50 A Power loss at IF rated : 180 W Auxiliary voltage (X3:1-2) AC input voltage: 110 V -15%...230 V +10%; single phase Frequency: 45 ... 65 Hz AC input power: 15 W; 30 VA Inrush current: <5 A / 20 ms Mains buffering: min 30 ms Terminal row X2: X2: 1 RS 485 serial link to X16: 1 at SDCS-CON-1 / CON-2 X2: 2 RS 485 serial link to X16: 2 at SDCS-CON-1 / CON-2 X2: 3 Ground B grounded via cable screen and / or grounded via S2 X2: 4 not used X2: 5 not used ➀ If Field weakening is needed, actual field current of the motor at top speed must be higher than 0.3 A C1 (+) D1 (-) U1 1 5 X6 X2 1 5 V23, V24 V11, V12 V13, V14 V21, V22 X123 X124 X121 X122 X111 X112 X113 X1141 X70 7 X50 1 1 X20 8 X5 SDCS-FEX-31A (4-Q) SDCS-FEX-32A (2-Q) X12 X11 V1 2 75 330 S11 3 42 S2 1 3 42 6 9 1 X800 10 LED 1 2X3 6 T1 Sub-D GNDB area S2: 1-3 * S2: 1-2 S2: 3-4 GNDB isolated GNDB grounded via RC circuit GNDB direct grounded Jumper Coding Grounding of RS485 Transmission driver * Default value CPU mode S1: 1-2 S1: 3-4 * Firmware download Field exciter mode X101 X100 Commutation choke Conductive supports Isolating supports Line potential ! 1 2 3 4 5 6 7 8 9 10 Node no. 1 serial link CON-2 not used Field exciter mode Bridge reversal time: 4 cycles Serial link to CON-1, CON-2 Node no. 2 serial link CON-2 not used Test mode extended; Bridge reversal time Not used - don’t select Setting X800 Switch OFF * ON * Default value for all switches The settings are read during initialization. T1 T1 + - + - AC supply DC output AC supply DC output III 8-5 8.3.2 Electronic power supply There is a power supply unit on the board. Supply is connected at terminal X3. The rated AC voltages 115 V and 230 V can be applied without any modifi- cation. The power supply unit provides the DC voltages 30 V, 15 V, 5 V and -15 V to the control electronics. Voltages can be measured by means of a multime- ter from the terminal X70 (see the layout). In addition the power supply generates 5 V for gal- vanic isolated RS485 communication drivers. This voltages can be measured at terminals X100/X101. Measured Terminal Ground voltage positive +5V X70:1 X70:2 (GND) +30V X70:3 X70:5 (GND) +15V X70:4 X70:5 (GND) -15V X70:6 X70:5 (GND) + 5V X100 X101:1 (GNDB) 8.3.3 Control unit The control unit includes the following main blocks: - Micro controller H8 for control and firing - Actual DC current measurement with an AC current transformer. - RS485 interface to the converter's controller board SDCS-CON-x. The software for the field current control is stored in the FlashPROM memory. This software contains a PI current controller Fault/reset logic Synchronization and PLL function Bridge reversal function (only DCF 504A) The setting and updating of all control parameters are set from armature converter via RS485 inter- face. Actual current, field current reference, control and status bit are cyclic sent via RS 485 communi- cation. The field exciter is equipped with an auto-scaling function of burden resistor based on the nominal field current of the motor. The output Iact represents the actual field current, which is measured via the AC transformer, then rectified and transferred into a voltage signal with burden resistors. The burden resistors -scaled to measurement range- are adapted by the board its- elf depending on the setting of the nominal motor field current. The current signal can be measured UCursig at X20:3-X70:2 and is scaled to 4 V *Iact / IScale IScale = 3A, 5A, 7A, 9A, 11A, 13A, 15A, 17A, 21A, 27A, 33A, 39A, 45A, 51A 8.3.4 Power section If a DCF503A-0050 is in use two diode-thyristor modules are arranged as a half-controlled single- phase rectifier. If a DCS504A-0050 is in use four thyristor-thyristor modules are arranged as a full- controlled single-phase rectifier. The anodes of the two diodes (anodes / cathodes of the thyristors) are not connected directly to each other as usual; they are connected to the ends of the primary winding of the current transformer. The centre tap is the nega- tive output of the rectifier. Thus it is possible to measure the DC current with an AC current trans- former. A MOV (Metal Oxide Varistor) protects the AC input against voltage spikes from the external source. Another MOV protects the DC output against volt- age surges which can be caused by the field wind- ing of a DC machine. The free wheeling function needed e.g. during network failure is ”build in” be- cause of the diodes, if the half-controlled version is in use. If the full-controlled version is used the free wheeling function is realized by using the thyristors in diode mode, triggered by a fast voltage rise. 8.3.5 RS232-Port The RS232 interface is used for download the 'Field exciter firmeware package'. The default settings of this interface are as follows: Signal level: RS232 (+12V / -12V) Data format: UART Message format: Modbus-Protocol Transmission method: half-duplex Baudrate: 9.600 Baud Number of Data bits: 8 Number of Stop bits: 1 Parity-Bit: odd The programming procedure is activated by setting S1:1-2 during auxiliary voltage is switched ON. Set- ting for field exciter mode is S1:3-4 (default). 1 9 5 6 X6: Description 1 not connected 2 TxD 3 RxD 4 not connected 5 SGND Signal ground 6...9 not connected Fig. 8.3/3 Pin assignment of RS232-Port 8.3.6 Diagnosis The aramarure converter receives via serial link the sum of all faults in "Fex status bit". A more detailed error code is given on the seven segment display of DCF 503A/ DCF 504A. 8 F82 Hardware fault F83 Software fault F88 Mains undervoltage < 40 V AC F89 Mains overvoltage > 620 V AC F90 Mains synchron. fault < 40Hz; > 70 Hz F91 Load overcurrent above 125% of actual selected measurment range F92 Fast voltage rise (parameter 44.04 / 44.10 / 13.10 / 13.07) all faults are reset with the next  command to the armatue converter Boot sequence or empty FlashPROM III 8-6 Fig. 8.3/6 Serial communication cable connection Fig. 8.3/5 Serial communication cable connection and address setting for Node 1 and field exciter Node 2, using SDCS-FEX-2 and DCF50xA-0050 8.3.7 Field exciter configurations The data exchange between the SDCS-CON-x and the field exciter SDCS-FEX-2 or the DCF503A/ 504A-0050 is done via a RS485 serial link, which can be configured as a bus structure. This link is used to transfer references, actual values and set- tings for up to two field exciter units. The drive software located on the SDCS-CON-x board consists of two field supply functions, first field exciter and second field exciter. The first field exciter is already connected to the EMF controller to control the motor in all points of the motor dia- gram. The second field exciter is accessible via the field current reference. The RS485 interface works with a screened two- wire cable. The allowed length is 5 m. The wires have to be connected to the terminals X2:1 and X2:2 and the screen to X2:3. Typical application of this kind is two DC motors connected to one converter. The load sharing can be done by means of adjusting the excitation cur- rent of the second DC-motor. There are two possible configurations for two Node numbers of the field exciters: - one SDCS-FEX-2 and one external field exciter (DCF503A-0050, DCF504A-0050 or 3-phase field exciter) or - two external field exciter units (DCF503A-0050, DCF504A-0050 or 3-phase field exciter). If a SDCS-FEX-2 is used, it will be always recogni- zed as the field exciter Node 1 by the software. If a DCF503A/504A-0050 is used as Node 1 or Node 2 it must be coded according to the table be- low. Node 2 is operating with a cycle time of 100 ms. Fig. 8.3/4 Typical application example with two field exciter units and one converter (without field weakening). Procedure for field exciter Node changing of the DCF 503A/504A: • Switch off the units voltage supply • Set the appropriate switch according to the table • Initialization through switch on the electronics supp- ly voltage M M D C F503- 0050 D C F503- 0050 SD C S- C O N-x 1 . 2 . Field exciter Node 1 Field exciter Node 2 Unit type Setting X800 Unit type Setting X800 SDCS-FEX-2 --- --- --- DCF 503A/504A X800:1 = OFF --- --- SDCS-FEX-2 --- DCF 503A/504A X800:1 = ON DCF 503A/504A X800:1 = OFF DCF 503A/504A X800:1 = ON U1 V1 C1 D1 PE X2:1 X2:2 X2:3 X3:2 X16:1 X16:2 X16:3 DCF503A- 0050 SDCS- CON-2 X3:1 X14 SDCS- FEX-2 X14 AC INPUT DC OUTPUT Power supply Total length max 5 m Armature controller Field exciter Node 2 field exciter Node 1 Node 2 X800:1=ON X2:1 X2:2 X2:3 X3:2 X16:1 X16:2 X16:3 DCF503- 0050 SDCS- CON-x X3:1 X2:1 X2:2 X2:3 X3:2 DCF503- 0050 X3:1 U1 V1 C1 D1 PE U1 V1 C1 D1 PE AC INPUT DC OUTPUT Power supply Total length max 5 m Armature controller AC INPUT DC OUTPUT Power supply Total length max 5 m Field exciter Node 2 Field exciter Node 1 Node 1 X800:1=OFF Node 2 X800:1=ON III 8-7 External field exciter DCF 503A-0050 DCF 504A-0050 Dimensions in mm Weight appr. 10 kg 8.3.8 Dimensions Fig. 8.3/7 Dimension drawing of DCF 503/4A U1 V1 C1 D1 U1 V1 C1 (+) D1 (-) 1 9 5 6 X 80 0 M6 17 3 3x 41 = 12 3 M6 X6 X2 X800 LED Sub-D 1 10 X 2: S ig n al te rm in a ls S er ia l l in k X 3: A ux . po w er s u pp ly te rm in a ls all for M6 all for M6 al l f or M 6 Direction of air flow M in im um T op c le a ra nc e all for M6 M in im um B ot to m c le ar an ce all for M6 M ou nt in g d ire ct io n Signal terminals Serial link (aux. voltages) Aux. power supply terminals A A Note: In case of vibrating environments use fixing holes A III 8-8 The three-phase field supply converter DCF 501B/ 502B and DCF 601/602 need a separate active Over- voltage Protection unit DCF 505 and DCF 506 for protection the power part against inadmissibly high voltages. The protection unit operates by switch on a free- wheeling circuit between the F+ and F- connectors if a overvoltage occurs. The DCF 505/506 consists of a 8.4 DCF505 / DCF506 Overvoltage Protection trigger unit and a free-wheeling thyristor (two in anti- parallel at DCF 506). Thyristor firing is caused by a 1400 V (FEP1 - 500 V) and 1800 V (FEP2 - 690 V) trigger diode. The DCF 506 consist of a relay output for signalling the field supply converter that the overvoltage protec- tion is active. The output is active in the free-wheeling process until the current is less than appr. 0.5 A. Fig. 8.4/1: Simple load with DCF 501B/601 and 2-Q Overvoltage Protection DCF 505 Fig. 8.4/2: Motor field supply with DCS 50xB/DCF 60x and 4-Q Overvoltage Protection DCF 506 Assignment Field supply converter to Overvol- tage protection unit Field supply converter Overvoltage Protection for motor fields 2-Q, 500 V DCF501B/601-0025-51 ... DCF506-0140-51 DCF501B/601-0140-51 DCF501B/601-0200-51 ... DCF506-0520-51 DCF501B/601-0520-51 4-Q, 500V DCF502B/602-0025-51 ... DCF506-0140-51 DCF502B/602-0140-51 DCF502B/602-0200-51 ... DCF506-0520-51 DCF502B/602-0520-51 Inductive load supply Overvoltage Protection for other applications 4-Q, 500V DCS502B/602-0900-51 DCF506-1200-51 DCS502B/602-1200-51 DCF506-1200-51 DCS502B/602-1500-51 DCF506-1500-51 4-Q, 690V DCS502B/602-0900-71 DCF506-1500-71 DCS502B/602-1500-71 Table 8.4/1: Assignment converter to Overvoltage Protection unit For motor field supply units DCF 501/601 (2-Q), DCF 502B/602 (4-Q) it is always overvoltage pro- tection unit DCF 506 required. The overvoltage protection unit DCF 505 is suitable for 2-Q converters DCF 501B/601 with simple non- motoric inductive load. DCF 501B DCF 601 C1(+) D1(-) DCF 505 X11 X12 Field supply Converter Overvoltage protection MDCF 501B/502BDCF 601/602 DCF 506 X6:2 9 X4:1 2 C1(+) D1(-) X11 X12 Field supply Converter Overvoltage protection III 8-9 Diagram Fig. 8.4/3: Overvoltage Protection DCF 505 / DCF 506 F - A1 X2:3 X1:1 G1 A K1 X2:2 X1:3 X2:1 G2 K2 X3:1 X3:2 X4:1 X4:2 K R3 F + X11 X12 1 2AK 1 2 1 2 1 2 R1 R4 R2 V1 X1:2 SDCS-FEP-1 (500 V) SDCS-FEP-2 (690 V) MJEM 4 mm2 for 25-140 A MJEM 10 mm2 for 250-520 A MJEM 25 mm2 for 1200-1500 A parts not used for 2-Q unit red grey red grey III 8-10 Overvoltage Protection DCF 505-0140/0520-51 DCF 505-1200-51 DCF 506-0140/0520-51 Dimensions in mm Weight appr. 8 kg Dimensions Overvoltage Protection DCF 506-1200-51 DCF 506-1500-51 DCF 506-1500-71 Dimensions in mm Weight appr. 20 kg         X11 (F+) X12 (F-) 12 16 75 33.5 9 35 0 11 7 342 M8 X3 X1 X4 X2 12 SDCS-FEP-1 (500 V) SDCS-FEP-2 (690 V) 42 145 8 .5 355 145 f. M6M84032 3 5 8 .5 4 82 20 135 X11 X12 III 9-1 Manufacturer/ Type Resistance [m] Fuse F1 Size Fuse holder Caliper [mm] Bussman 170M 1564 6 50A 660V UR 0 OFAX 00 S3L 78.5 Bussman 170M 1566 3 80A 660V UR 0 OFAX 00 S3L 78.5 Bussman 170M 1568 1,.8 125A 660V UR 0 OFAX 00 S3L 78.5 Bussman 170M 3815 0,.87 200A 660V UR 1 OFAX 1 S3 135 Bussman 170M 3816 0,.59 250A 600V UR 1 OFAX 1 S3 135 Bussman 170M 3817 0,.47 315A 660V UR 1 OFAX 1 S3 135 Bussman 170M 3819 0,.37 400A 660V UR 1 OFAX 1 S3 135 Bussman 170M 5810 0,.3 500A 660V UR 2 OFAX 2 S3 150 Bussman 170M 6811 0,.22 700A 660V UR 3 OFAS B 3 150 Bussman 170M 6813 0,.15 900A 660V UR 3 OFAS B 3 150 Bussman 170M 6166 0,.09 1250A 660V UR * 170H 3006 110 Table 9.1/1: Fuses and fuse holders 9.1.1 Fuses and fuse holders (Converter size C1, C2) 9 Accessories 9.1 Accessories - Power circuit Main dimensions of fuse holders Fuse HxWxD holder [mm] OFAX 00 S3L 148x112x111 OFAX 1 S3 250x174x123 OFAX 2 S3 250x214x133 OFAS B 3 250x246x136 Table 9.1/2: Fuse holders Fig. 9.1/2: Fuse holder OFAX ... Fig. 9.1/3: Fuse holder OFAS B 3 Dimensions [mm] Size 0...3 Size a b c d e 0 78,5 50 35 20,5 15 1 135 69 45 45 20 2 150 69 55 55 26 3 150 68 76 76 33 Remark: Given dimensions may be exeeded in some cases. Please take them only for information. Fig. 9.1/1: Fuses size 0...3 L1 L2 L3 F1 a d e 2 10 c 6 b Indicator OFASB 3 W D H W D H Fig. 9.1/4: Fuse holder 170H 3006 M10 110 A A M8 27 205 180 64 77 M8 A-A 60 85 Ø 9 M10 40 * drawing see chapter 2.2 III 9-2 Type Choke rated Weight Power loss recommended L Irms Ipeak Voltage Fe Cu for armature [H] [A] [A] [UN] [kg] [W] [W] converter type ND 01 512 18 27 500 2.0 5 16 DCS...-0025 ND 02 250 37 68 500 3.0 7 22 DCS...-0050 ND 03 300 37 68 600 3.8 9 20 DCS...-0050 ND 04 168 55 82 500 5.8 10 33 DCS...-0075 ND 05 135 82 122 600 6.4 5 30 DCS...-0110 ND 06 90 102 153 500 7.6 7 41 DCS...-0140 ND 07 50 184 275 500 12.6 45 90 DCS...-0250 ND 08 56.3 196 294 600 12.8 45 130 DCS...-0270 ND 09 37.5 245 367 500 16.0 50 140 DCS...-0350 ND 10 25.0 367 551 500 22.2 80 185 DCS...-0520 ND 11 33.8 326 490 600 22.6 80 185 DCS...-0450 ND 12 18.8 490 734 500 36.0 95 290 DCS...-0820 (2-Q) ND 13 18.2 698 1047 690 46.8 170 160 DCS...-0820 (4-Q) ND 14 9.9 930 1395 500 46.6 100 300 DCS...-1200 ND 15 10.9 1163 1744 690 84.0 190 680 DCS...-1500 ND 16 6.1 1510 2264 500 81.2 210 650 DCS...-2000 Line chokes type ND 01...ND 16 Table 9.1/3: Data of line chokes Type a1 a b c d e f g mm² ND 01 120 100 130 48 65 116 4 8 6 ND 02 120 100 130 58 65 116 4 8 10 ND 03 148 125 157 63 80 143 5 10 10 ND 04 148 125 157 78 80 143 5 10 16 ND 05 148 125 157 78 80 143 5 10 25 ND 06 178 150 180 72 90 170 5 10 35 Line chokes type ND 01...ND 06 to mains to converter 9.1.2 Line chokes Fig. 9.1/4: Line choke type ND 01...ND 06 A, B, C 300 100 0 X, Y, Z b a a1 c A X B Y C Z A B C X Y Z 3 A, B, C X, Y, Z d e g f Line chokes for use in industrial environment (minimum requirements), low inductive voltage drop, deep commutation notches. III 9-3 Type A B C E F G H I K ND 07, 08 285 230 86 250 176 65 80 9x18 385 ND 09 327 250 99 292 224 63 100 9x18 423 ND 10, 11 408 250 99 374 224 63 100 11x18 504 ND 12 458 250 112 424 224 63 100 11x18 554 Line chokes type ND 07...ND 12 Line chokes type ND 15, 16Line chokes type ND 13, 14 Fig. 9.1/5: Line chokes type ND 07...ND 12 Fig. 9.1/6: Line chokes type ND 13, ND 14 Fig. 9.1/7: Line chokes type ND 15, ND 16 C ±1 B ±1 F ±0.3 H ±2 15 3AST 478223 D5 3AFE 10014603 0.0188 mH 490 A I max 734 A 15 K I ( 6x ) G ± 4 A ± 2 E ± 2 A-A E ±2 7 ±0.3F A A m in 3 0 ∅ w ith ou t v ar ni sh fo r co nd uc tio n to th e m ou nt in g p la te A A A -A 18 x1 3( 3x ) ø 13 (3 x) 100 ±2140 45 45 ±4 15 4 ±2 34 2 ±2150 40 50 ±2123 10 ±1290 100 30 ±0 .3 22 4 m in 3 0 ∅ w ith ou t v ar ni sh fo r co nd uc tio n to th e m ou nt in g p la te (6 x) 1 0x 18 ±2151 45 90 ±5 17 6 ±2 44 0 ±2181 147 10 48 15 80 40 (1 2x ) ø 13 30140 ±1390 14030 20 10 0 10 A A A -A 147 13 ±0 .3 31 6 18 m in 3 0 ∅ w ith ou t v ar ni sh fo r co nd uc tio n to th e m ou nt in g p la te Don't use choke terminals as cable or busbar support! Don't use choke terminals as cable or busbar support! III 9-4 Table 9.1/4: Data of line chokes type ND4 Line chokes type ND 401...ND 402 Fig. 9.1/8: Line choke type ND 401...ND 402 Table 9.1/5: Dimensions of line chokes type ND 401...ND 402 Type Choke rated Weight Power loss Load Load L Irms Ipeak Voltage Fe Cu DC curr. 1 DC curr.2 [H] Line AC [A] [A] [UN] [kg] [W] [W] ND 401 1000 18.5 27 500 3.5 13 35 22.6 18 ND 402 600 37 68 500 7.5 13 50 45 36 ND 403 450 55 82 500 11 42 90 67 54 ND 404 350 74 111 500 13 78 105 90 72 ND 405 250 104 156 500 19 91 105 127 101 ND 406 160 148 220 500 22 104 130 179 143 ND 407 120 192 288 500 23 117 130 234 187 ND 408 90 252 387 500 29 137 160 315 252 ND 409 70 332 498 500 33 170 215 405 324 ND 410 60 406 609 500 51 260 225 495 396 ND 411 50 502 753 500 56 260 300 612 490 ND 412 40 605 805 500 62 280 335 738 590 ND 413 35 740 1105 500 75 312 410 900 720 Type A B C D E F Ø G Ø H ND 401 160 190 75 80 51 175 7 9 ND 402 200 220 105 115 75 200 7 9 Line chokes type ND 401...ND 413 Line chokes for use in light industrial/residential environment, high inductive voltage drop, reduced commutation notches. These chokes are designed for drives which usual operate in speed control mode. The maximum average DC load current depends on the operation point. DC curr. 1 = maximum continuous current for Urated supply = 400 V DC curr. 2 = maximum continuous current for Urated supply = 500 V A X B Y C Z 170 D B F±1 ø G+5 E ±2 C ZYX BA C Terminals: WAGO Type 202 UL File E45172 ø H A ø G tin-coated III 9-5 Fig. 9.1/9: Line choke type ND 403...ND 408 Fig. 9.1/10: Line choke type ND 409...ND 413 Line chokes type ND 403...ND 408 Line chokes type ND 409...ND 413 Type A B C D E F Ø G Ø H Ø K ND 403 220 230 120 135 100 77.5 7 9 6.6 ND 404 220 225 120 140 100 77.5 7 9 6.6 ND 405 235 250 155 170 125 85 10 9 6.6 ND 406 255 275 155 175 125 95 10 9 9 ND 407 255 275 155 175 125 95 10 9 11 ND 408 285 285 180 210 150 95 10 9 11 Type A B C D E F Ø G Ø H Ø K ND 409 320 280 180 210 150 95 10 11 11 ND 410 345 350 180 235 150 115 10 13 14 ND 411 345 350 205 270 175 115 12 13 2x11 ND 412 385 350 205 280 175 115 12 13 2x11 ND 413 445 350 205 280 175 115 12 13 2x11 Connecting AL terminals see also relevant standards Connecting AL terminals see also relevant standards B A F ±2 104550 ø H tin-coated E ±2 C D ø G+5 A X B Y C Z øK AL B A F ±2 12 ø H tin-coated øG+6 E ±2 C D A X B Y C Z A B C X Y Z øK AL III 9-6 9.2 Accessories - Field Type for Field curr. Transformer Weight Power loss Fuse F3 IF Isek [kg] PV [W] [A] U prim = 500 V; 50/60Hz T 3.01 6 A 7 A 15 65 10 T 3.02 12 A 13 A 20 100 16 T 3.03 16 A 17 A 20 120 25 T 3.04 30 A 33 A 36 180 50 T 3.05 50 A 57 A 60 250 63 Uprim = 690 V; 50/60Hz T 3.11 6 A 7 A ➀ 15 80 10 T 3.12 12 A 13 A ➀ 20 125 16 T 3.13 16 A 17 A ➀ 30 150 20 T 3.14 30 A 33 A 60 230 50 T 3.15 50 A 57 A 60 320 63 ➀ 690 V transformer input cannot be used for the field converters SDCS-FEX-1 and SDCS- FEX-2 (isolation only 600 V max.) Table 9.2/1: Autotransformer data 9.2.1 Autotransformer T3 9.2.2 Line choke L3 for SDCS-FEX-2 F 3 T 3       Type A B C D h e G T 3.01 / T 3.11 210 110 112 75 240 10x18 95 T 3.02 / T 3.12 210 135 112 101 240 10x18 95 T 3.03 T 3.13 230 150 124 118 270 10x18 95 T 3.04 260 150 144 123 330 10x18 95 T 3.14 295 175 176 141 380 12x18 95 T 3.05 / T 3.15 F 3 T 3 Fig. 9.2/1: Autotransformer T3 4.5 Ø 2 m ax 7 0 max 80 37 52 10 00 1 3 4 1 3 2 4 55 Fig. 9.2/2: Line choke L3 Type line choke data L3 Weight Power L Irms Ipeak loss [H] [A] [A] [kg] [W] [mm²] ND30 2x >500 16 16 1,1 8 2 Table 9.2/2: Data of line choke for field exciter III 9-7 9.3 Fan, electronics Type Power Weight Fuse F2 Power loss [VA] [kg] [A] [W] T2 460 13 6 20 Table 9.3/1: Data supply transformer T2 Input voltage: 380...690 V/1~; 56 / 60 Hz Output voltage: 115/230 V/1~ 9.3.1 Supply transformer T2 for electronics and fan F2 T2 15 0 106 125 128 148 100 +-5 35 0 11 5 23 0 0 38 0 40 0 41 5 45 0 50 0 52 5 57 5 60 0 66 0 69 0 Fig. 9.3/1: Transformer T2 III 9-8 Appendix A Optical cables For the bus communication of the DCS converters there are different optical cables available. Kind of cable Connector cable length Ident. no. Fig. plastic fibre optic single cable plug 0.5...20 m 3ADT 693324 1 plastic fibre optic double cable plug 0.5...20 m 3ADT 693318 2 HCS silica (double) without plastic jacket plug 30...50 m 3ADT 693355 3 HCS silica (double) with plastic jacket plug 50...200 m 3ADT 693356 4 Glass fibre optic (double) reinforced FSMA 10...100 m 3ADV 300002 5 blue black black blue L blue black L Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 fo r D C S 4 00 D C S 5 00 D C S 6 00 fo r D C S 6 00 s el ec te d c h an n el s. se e m an u al N D B U 3 A D W 0 00 1 00 R 02 01 fo r D C S 5 00 + Y P C 11 5 L orange black orange black ∅ 5 mm L blue red blue red∅ 8 mm L green red green red A 1 III 9-9 Notices I A-2 III 9-10 Since we aim to always meet the latest state-of-the- art standards with our products, we are sure you will understand when we reserve the right to alter particulars of design, figures, sizes, weights, etc. for our equipment as specified in this brochure. 3A D W 0 00 1 65 R 01 01 R E V A 04 _2 00 2 ABB Automation Products GmbH Postfach 1180 68619 Lampertheim • GERMANY Telefon +49(0) 62 06 5 03-0 Telefax +49(0) 62 06 5 03-6 09 www.abb.com/dc   *165R0101A2130000*

该厂商的其他资料

PDF
ABB ACS5000 选型样本
ABB ACS5000 选型样本
2017-03-1532
北京ABB电气传动系统有限公司
PDF
ABB ACS510 选型样本
ABB ACS510 选型样本
2017-03-1558
北京ABB电气传动系统有限公司
PDF
ABB NISA-03 用户手册
ABB NISA-03 用户手册
2017-03-1524
北京ABB电气传动系统有限公司
样本库微信小程序

微信扫一扫,手机找样本

© 2017 样本库 京ICP备17018997号-1

想要解决产品营销和销售难题?

不妨试试样本通
了解更多